Comptes Rendus
Effect of regularized functions on the dynamic response of a clutch system using a high-order algorithm
Comptes Rendus. Mécanique, Volume 345 (2017) no. 11, pp. 764-778.

The main objective of this work is to propose some regularization techniques for modeling contact actions in a clutch system and to solve the obtained nonlinear dynamic problem by a high-order algorithm. This device is modeled by a discrete mechanical system with eleven degrees of freedom. In several works, the discontinuous models of the contact actions are replaced by the smoothed functions using the hyperbolic tangent. We propose, in this work, to replace the discontinuous model by a regularized model with new continuous functions that permit us to search the solution under Taylor series expansion. This regularized model approaches better the discontinuous model than the model based on the smoothing functions, especially in the vicinity of the zone of singularities. To solve the equations of motion of discrete mechanical systems, we propose to use a high-order algorithm combining a time discretization, a change of variable based on the previous time, a homotopy transformation and Taylor series expansion in the continuation process. The results obtained by this modeling are compared with those computed by the Newton–Raphson algorithm.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.08.002
Mots clés : Clutch, Nonlinear dynamics, No smoothed functions, Regularization technique, High-order approach, Homotopy transformation, Taylor series
Youssef Hilali 1 ; Bouazza Braikat 1 ; Hassane Lahmam 1 ; Noureddine Damil 1

1 Laboratoire d'ingénierie et matériaux (LIMAT), Faculté des sciences Ben M'Sik, Université Hassan-II de Casablanca, Sidi Othman, B.P. 7955, Casablanca, Morocco
@article{CRMECA_2017__345_11_764_0,
     author = {Youssef Hilali and Bouazza Braikat and Hassane Lahmam and Noureddine Damil},
     title = {Effect of regularized functions on the dynamic response of a clutch system using a high-order algorithm},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {764--778},
     publisher = {Elsevier},
     volume = {345},
     number = {11},
     year = {2017},
     doi = {10.1016/j.crme.2017.08.002},
     language = {en},
}
TY  - JOUR
AU  - Youssef Hilali
AU  - Bouazza Braikat
AU  - Hassane Lahmam
AU  - Noureddine Damil
TI  - Effect of regularized functions on the dynamic response of a clutch system using a high-order algorithm
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 764
EP  - 778
VL  - 345
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2017.08.002
LA  - en
ID  - CRMECA_2017__345_11_764_0
ER  - 
%0 Journal Article
%A Youssef Hilali
%A Bouazza Braikat
%A Hassane Lahmam
%A Noureddine Damil
%T Effect of regularized functions on the dynamic response of a clutch system using a high-order algorithm
%J Comptes Rendus. Mécanique
%D 2017
%P 764-778
%V 345
%N 11
%I Elsevier
%R 10.1016/j.crme.2017.08.002
%G en
%F CRMECA_2017__345_11_764_0
Youssef Hilali; Bouazza Braikat; Hassane Lahmam; Noureddine Damil. Effect of regularized functions on the dynamic response of a clutch system using a high-order algorithm. Comptes Rendus. Mécanique, Volume 345 (2017) no. 11, pp. 764-778. doi : 10.1016/j.crme.2017.08.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.08.002/

[1] C. Padmanabhan; R. Singh Dynamics of a piecewise non-linear system subject to dual harmonic excitation using parametric continuation, J. Sound Vib., Volume 184 (1995) no. 5, pp. 767-799

[2] C. Gaillard; R. Singh Dynamic analysis of automotive clutch dampers, Appl. Acoust., Volume 60 (2000), pp. 399-424

[3] C. Duan; R. Singh Super-harmonics in a torsional system with dry friction path subject to harmonic excitation under a mean torque, J. Sound Vib., Volume 285 (2005), pp. 803-834

[4] C. Duan; R. Singh Transient responses of a 2-dof torsional system with nonlinear dry friction under a harmonically varying normal load, J. Sound Vib., Volume 285 (2005), pp. 1223-1234

[5] Y. Driss; T. Fakhfakh; M. Haddar Dynamics of a five degree of freedom torsional system with dry friction path and clearance nonlinearity, Int. Rev. Mech. Eng., Volume 1 (2007) no. 1, pp. 61-69

[6] Y. Driss; T. Fakhfakh; M. Haddar Effect of eccentricity on a clutch system under a harmonically varying normal load, J. Fail. Anal. Prev., Volume 7 (2007), pp. 127-136

[7] L. Walha; T. Fakhfakh; M. Haddar Nonlinear dynamics of a two-stage gear system with mesh stiffness fluctuation, bearing flexibility and backlash, Mech. Mach. Theory, Volume 44 (2009) no. 5, pp. 1058-1069

[8] L. Walha; Y. Driss; M.T. Khabou; T. Fakhfakh; M. Haddar Effects of eccentricity defect on the nonlinear dynamic behavior of the mechanism clutch-helical two stage gear, Mech. Mach. Theory, Volume 46 (2011) no. 7, pp. 986-997

[9] J.R. Dormand; P.J. Prince A family of embedded Runge–Kutta formulae, J. Comput. Appl. Math., Volume 6 (1980) no. 1, pp. 19-26

[10] C. Duan Dynamic analysis of dry friction path in a torsional system, The Ohio State University, 2004 (Ph.D. thesis)

[11] L. Walha; T. Fakhfakh; M. Haddar Backlash effect on dynamic analysis of a two-stage spur gear system, J. Fail. Anal. Prev., Volume 6 (2006) no. 3, pp. 60-68

[12] C. Duan; R. Singh Dynamic analysis of preload nonlinearity in a mechanical oscillator, J. Sound Vib., Volume 301 (2007) no. 3–5, pp. 963-978

[13] T.S. Osman; J.T. Dreyer; R. Singh Order domain analysis of speed-dependent friction-induced torque in a brake experiment, J. Sound Vib., Volume 331 (2012) no. 23, pp. 5040-5053

[14] T.C. Kim; T.E. Rook; R. Singh Effect of smoothening functions on the frequency response of an oscillator with clearance non-linearity, J. Sound Vib., Volume 263 (2003) no. 3, pp. 665-678

[15] Y. Driss; T. Fakhfakh; M. Haddar Dynamics of a five-degree-of-freedom torsional system with dry friction path and clearance nonlinearity, Int. J. Numer. Anal. Methods Eng., Volume 2 (2014) no. 1, pp. 19-27

[16] M. Jamal; B. Braikat; S. Boutmir; N. Damil; M. Potier-Ferry A high order implicit algorithm for solving instationary non-linear problems, Comput. Mech., Volume 28 (2002) no. 5, pp. 375-380

[17] B. Braikat; M. Jamal; N. Damil Algorithmes d'intégration temporelle implicites couplés avec des résoluteurs d'ordre élevé, Rev. Eur. Éléments Finis, Volume 11 (2002) no. 6, pp. 749-772

[18] S. Boutmir; B. Braikat; M. Jamal; N. Damil; B. Cochelin; M. Potier-Ferry Des solveurs implicites d'ordre supérieur pour les problèmes de dynamique non linéaire des structures, Rev. Eur. Éléments Finis, Volume 13 (2004) no. 5–7, pp. 449-460

[19] B. Braikat; M. Jamal; N. Damil Utilisation des techniques de la méthode asymptotique numérique pour la résolution des problèmes instationnaires non linéaires, Rev. Eur. Éléments Finis, Volume 13 (2004) no. 1–2, pp. 119-139

[20] A. Timesli; B. Braikat; H. Lahmam; H. Zahrouni A new algorithm based on moving least square method to simulate material mixing in friction stir welding, Eng. Anal. Bound. Elem., Volume 50 (2015), pp. 372-380

[21] M.A. Crisfield Faster modified Newton–Raphson iteration, Comput. Methods Appl. Mech. Eng., Volume 20 (1979) no. 3, pp. 267-278

[22] R. Singh; H. Xie; R.J. Comparin Analysis of Automotive Neutral Gear Rattle, Academic Press Limited, 1989

[23] T.C. Kim; T.E. Rook; R. Singh Super and sub-harmonic response calculations for a torsional system with clearance nonlinearity using the harmonic balance method, J. Sound Vib., Volume 281 (2005) no. 3–5, pp. 965-993

[24] C. Duan; R. Singh Dynamics of a 3-dof torsional system with a dry friction controlled path, J. Sound Vib., Volume 289 (2006) no. 4–5, pp. 657-688

[25] C. Duan; R. Singh Forced vibrations of a torsional oscillator with coulomb friction under a periodically varying normal load, J. Sound Vib., Volume 325 (2009) no. 3, pp. 499-506

[26] H. Dresig; F. Holzweißig Dynamics of Machinery: Theory and Applications, Springer-Verlag, Berlin, Heidelberg, 2010

[27] E.J. Berger Friction modeling for dynamic system simulation, Appl. Mech. Rev., Volume 55 (2002) no. 6, pp. 535-577

[28] C. Duan; R. Singh Isolated sub-harmonic resonance branch in the frequency response of an oscillator with slight asymmetry in the clearance, J. Sound Vib., Volume 314 (2008) no. 1–2, pp. 12-18

[29] M. Potier-Ferry; N. Damil; B. Braikat; J. Descamps; J.-M. Cadou; H.L. Cao; A.E. Hussein Treatment of strong non-linearities by the asymptotic numerical method, C. R. Acad. Sci., Sér. IIB Mechanics Phys. Chem. Astron., Volume 3 (1997) no. 324, pp. 171-177

[30] H. Mottaqui; B. Braikat; N. Damil Discussion about parameterization in the asymptotic numerical method: application to nonlinear elastic shells, Comput. Methods Appl. Mech. Eng., Volume 199 (2010), pp. 1701-1709

[31] H. Mottaqui; B. Braikat; N. Damil Local parameterization and the asymptotic numerical method, Math. Model. Nat. Phenom., Volume 5 (2010), pp. 16-22

[32] N.M. Newmark A method of computation for structural dynamics, Proceedings of ASCE, vol. 85, 1959

[33] E.L. Allgower; K. Georg Numerical Continuation Methods: An Introduction, Springer Series in Computational Mathematics, vol. 13, 1990

[34] N. Damil; M. Potier-Ferry A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures, Int. J. Eng. Sci., Volume 28 (1990) no. 9, pp. 943-957

[35] B. Cochelin; N. Damil; M. Potier-Ferry Méthode asymptotique numérique, Hermès-Lavoisier, Paris, 2007

[36] B. Cochelin A path-following technique via an asymptotic-numerical method, Comput. Struct., Volume 53 (1994) no. 5, pp. 1181-1192

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Modeling and theoretical analysis of a novel ratcheting-type cam-based infinitely variable transmission system

Amjad Al-Hamood; Hazim Jamalia; Amer Imran; ...

C. R. Méca (2019)


Modal energetic analysis and dynamic response of worm gear drives with a new developed dynamic model

Ala Eddin Chakroun; Ahmed Hammami; Ana De-Juan; ...

C. R. Méca (2021)


Clutch size: a major sex ratio determinant in fig pollinating wasps?

Finn Kjellberg; Judith L. Bronstein; Glen van Ginkel; ...

C. R. Biol (2005)