In this paper, we characterize random eigenspaces with a non-intrusive method based on the decoupling of random eigenvalues from their corresponding random eigenvectors. This method allows us to estimate the first statistical moments of the random eigenvalues of the system with a reduced number of deterministic finite element computations. The originality of this work is to adapt the method used to estimate each random eigenvalue depending on a global accuracy requirement. This allows us to ensure a minimal computational cost. The stochastic model of the structure is thus reduced by exploiting specific properties of random eigenvectors associated with the random eigenfrequencies being sought. An indicator with no additional computation cost is proposed to identify when the method needs to be enhanced. Finally, a simple three-beam frame and an industrial structure illustrate the proposed approach.
Accepted:
Published online:
Martin Ghienne 1; Claude Blanzé 1; Luc Laurent 1
@article{CRMECA_2017__345_12_844_0, author = {Martin Ghienne and Claude Blanz\'e and Luc Laurent}, title = {Stochastic model reduction for robust dynamical characterization of structures with random parameters}, journal = {Comptes Rendus. M\'ecanique}, pages = {844--867}, publisher = {Elsevier}, volume = {345}, number = {12}, year = {2017}, doi = {10.1016/j.crme.2017.09.006}, language = {en}, }
TY - JOUR AU - Martin Ghienne AU - Claude Blanzé AU - Luc Laurent TI - Stochastic model reduction for robust dynamical characterization of structures with random parameters JO - Comptes Rendus. Mécanique PY - 2017 SP - 844 EP - 867 VL - 345 IS - 12 PB - Elsevier DO - 10.1016/j.crme.2017.09.006 LA - en ID - CRMECA_2017__345_12_844_0 ER -
%0 Journal Article %A Martin Ghienne %A Claude Blanzé %A Luc Laurent %T Stochastic model reduction for robust dynamical characterization of structures with random parameters %J Comptes Rendus. Mécanique %D 2017 %P 844-867 %V 345 %N 12 %I Elsevier %R 10.1016/j.crme.2017.09.006 %G en %F CRMECA_2017__345_12_844_0
Martin Ghienne; Claude Blanzé; Luc Laurent. Stochastic model reduction for robust dynamical characterization of structures with random parameters. Comptes Rendus. Mécanique, Volume 345 (2017) no. 12, pp. 844-867. doi : 10.1016/j.crme.2017.09.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.09.006/
[1] A computational strategy for the random response of assemblies of structures, Int. J. Solids Struct., Volume 41 (2004), pp. 6383-6405
[2] Analysis of structures with stochastic interfaces in the medium-frequency range, J. Comput. Acoust., Volume 13 (2005) no. 04, pp. 711-729
[3] Random eigenvalue problems in structural analysis, AIAA J., Volume 10 (1972) no. 4, pp. 456-462
[4] (Lecture Notes in Applied and Computational Mechanics), Volume vol. 24, Springer, Berlin, Heidelberg (2005), pp. 59-61 (chapter 9)
[5] Efficient PGD-based dynamic calculation of non-linear soil behavior, C. R., Méc., Volume 344 (2016) no. 1, pp. 24-41
[6] Stochastic Finite Element Methods and Reliability: A State-of-the-Art Report, 2000 (Technical Report)
[7] The eigenvalue problem for structural systems with statistical properties, AIAA J., Volume 7 ( April 1969 ) no. 4, pp. 642-648
[8] Random matrix eigenvalue problems in structural dynamics, Int. J. Numer. Methods Eng., Volume 69 (2007) no. 3, pp. 562-591
[9] An approximate solution scheme for the algebraic random eigenvalue problem, J. Sound Vib., Volume 260 (2003) no. 1, pp. 45-65
[10] Polynomial chaos in stochastic finite elements, J. Appl. Mech., Volume 57 (1990) no. 1, pp. 197-202
[11] The homogeneous chaos, Amer. J. Math., Volume 60 (1938) no. 4, pp. 897-936
[12] Stochastic Finite Elements: A Spectral Approach, New York, Dover, 2003
[13] Modeling uncertainty in flow simulations via generalized polynomial chaos, J. Comput. Phys., Volume 187 (2003) no. 1, pp. 137-167
[14] Efficient characterization of the random eigenvalue problem in a polynomial chaos decomposition, Int. J. Numer. Methods Eng., Volume 72 (2007) no. 4, pp. 486-504
[15] Eigenvalue analysis of a random frame, EURODYN2002, Munich, Germany, 2–5 September (2002), p. 341
[16] Stochastic buckling of a joined wing, Hangzhou, China, 26–28 May (2003)
[17] Hybrid perturbation-polynomial chaos approaches to the random algebraic eigenvalue problem, Comput. Methods Appl. Mech. Eng., Volume 217 (2012), pp. 153-167
[18] Vibration reduction by piezo-electric shunt: taking into account of uncertainties by non-intrusive methods, Proceedings of Uncertainties 2014, Rouen, France, June 23–27, 2014
[19] Caractérisation robuste de liaisons amortissantes avec dispositifs piezo-électriques pour la réduction de vibrations de structures, Conservatoire national des arts et métiers – CNAM, December 2013 (PhD Thesis)
[20] Rates of change of eigenvalues and eigenvectors, AIAA J., Volume 6 (1968) no. 12, pp. 2426-2429
[21] Comments on curve veering in eigenvalue problems, J. Sound Vib., Volume 106 (1986) no. 3, pp. 451-463
[22] High modal density, curve veering, localization – a different perspective on the structural response, J. Sound Vib., Volume 161 (1993), pp. 358-363
[23] On the quantification of eigenvalue curve veering: a veering index, J. Appl. Mech., Volume 78 (2011) no. 4 (pp. 041007-1–041007-8)
[24] Derivatives of eigenvectors of locally modified structures, Int. J. Numer. Methods Eng., Volume 11 (1977) no. 11, pp. 1769-1773
[25] Derivatives of eigensolutions for a general matrix, AIAA J., Volume 11 (1973) no. 8, pp. 1191-1194
[26] Numerical methods for evaluating the derivatives of eigenvalues and eigenvectors, AIAA J., Volume 13 (1975) no. 6, pp. 834-837
[27] Derivatives of eigenvalues and eigenvectors, AIAA J., Volume 8 (1970) no. 5, pp. 943-944
[28] Efficient computation of eigenvector sensitivities for structural dynamics, AIAA J., Volume 35 (1997) no. 11, pp. 1760-1766
[29] A practical algorithm for the efficient computation of eigenvector sensitivities, Comput. Methods Appl. Mech. Eng., Volume 130 (1996) no. 3–4, pp. 355-367
[30] Simplified calculation of eigenvector derivatives, AIAA J., Volume 14 (1976) no. 9, pp. 1201-1205
[31] Calculation of second and higher order eigenvector derivatives, J. Guid. Control Dyn., Volume 18 (1995) no. 4, pp. 919-921
[32] The derivatives of repeated eigenvalues and their associated eigenvectors, J. Vib. Acoust., Volume 118 (1996) no. 3, pp. 390-397
[33] Efficient computation of mode-shape derivatives for large dynamic systems, AIAA J., Volume 25 (1987) no. 10, pp. 1386-1390
[34] Calculation of eigenvector derivatives for structures with repeated eigenvalues, AIAA J., Volume 26 (1988) no. 7, pp. 867-871
[35] Comment on “Eigenvector derivatives with repeated eigenvalues”, AIAA J., Volume 28 (1990) no. 10 (1846–1846)
[36] Eigenvector derivatives with repeated eigenvalues, AIAA J., Volume 27 ( April 1989 ) no. 4, pp. 486-491
[37] Design sensitivity analysis for repeated eigenvalues in structural design, AIAA J., Volume 31 (1993) no. 12, pp. 2347-2350
[38] An efficient algebraic method for the computation of natural frequency and mode shape sensitivities – part I, distinct natural frequencies, Comput. Struct., Volume 62 (1997) no. 3, pp. 429-435
[39] Iterative methods for design sensitivity analysis, AIAA J., Volume 26 (1988) no. 11, pp. 1413-1415
[40] Computation of mixed partial derivatives of eigenvalues and eigenvectors by simultaneous iteration, Commun. Numer. Methods Eng., Volume 15 (1999) no. 9, pp. 641-649
[41] Exact nth derivatives of eigenvalues and eigenvectors, J. Guid. Control Dyn., Volume 17 (1994) no. 1, pp. 136-144
[42] Sensitivity analysis and optimization of multiple eigenvalues in structural design problems, Struct. Optim., Volume 8 (1994) no. 4, pp. 207-227
[43] Shape design sensitivity analysis of eigenvalues using “exact” numerical differentiation of finite element matrices, Struct. Optim., Volume 8 (1994) no. 1, pp. 52-59
[44] Sensitivity analysis and optimization of thin laminated structures with a nonsmooth eigenvalue based criterion, Struct. Optim., Volume 14 (1997) no. 4, pp. 219-224
[45] Natural frequency and mode shape sensitivities of damped systems: part I, distinct natural frequencies, J. Sound Vib., Volume 223 (1999) no. 3, pp. 399-412
[46] Natural frequency and mode shape sensitivities of damped systems: part II, multiple natural frequencies, J. Sound Vib., Volume 223 (1999) no. 3, pp. 413-424
[47] Electricité de France, Finite element code_aster, analysis of structures and thermomechanics for studies and research www.code-aster.org (1989–2017, open source on)
[48] Derivatives of eigenvalues and eigenvectors in non-self-adjoint systems, AIAA J., Volume 11 ( February 1973 ) no. 2, pp. 250-251
[49] Statistics of energy flows in spring-coupled one-dimensional subsystems, Philos. Trans. R. Soc., Math. Phys. Eng. Sci., Volume 346 (1994) no. 1681, pp. 525-542
[50] On the generalised distance in statistics, Proc. Natl. Inst. Sci. India, a Phys. Sci., Volume 2 (1936) no. 1, pp. 49-55
[51] Flexible and robust Bayesian classification by finite mixture models, Proceedings of 12th European Symposium on Artificial Neural Networks, 2004, pp. 75-80 (ESANN 2004, Bruges, Belgium, April 28–30, 2004)
[52] Joint statistics of natural frequencies of stochastic dynamic systems, Comput. Mech., Volume 40 ( Sep. 2007 ) no. 4, pp. 739-752
[53] Stochastic modeling of uncertainties in computational structural dynamics – recent theoretical advances, J. Sound Vib., Volume 332 (2013) no. 10, pp. 2379-2395
[54] Information theory and statistical mechanics, Phys. Rev., Volume 106 (1957), pp. 620-630
[55] User's Manual, Arianespace S.A., July 2011 (Issue 5, Revision 1 edition)
Cited by Sources:
Comments - Policy