Comptes Rendus
Effects of modal truncation and condensation methods on the Frequency Response Function of a stage reducer connected by rigid coupling to a planetary gear system
Comptes Rendus. Mécanique, Volume 345 (2017) no. 12, pp. 807-823.

The present paper is aimed at the application of a substructure methodology, based on the Frequency Response Function (FRF) simulation technique, to analyze the vibration of a stage reducer connected by a rigid coupling to a planetary gear system. The computation of the vibration response was achieved using the FRF-based substructuring method. First of all, the two subsystems were analyzed separately and their FRF were obtained. Then the coupled model was analyzed indirectly using the substructuring technique. A comparison between the full system response and the coupled model response using the FRF substructuring was investigated to validate the coupling method. Furthermore, a parametric study of the effect of the shaft coupling stiffness on the FRF was discussed and the effects of modal truncation and condensation methods on the FRF of subsystems were analyzed.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2017.09.008
Mots clés : Coupling method, Planetary transmission, Frequency Response Function, Frequency based substructuring, Condensation, Modal truncation
Marwa Bouslema 1, 2 ; Ahmed Frikha 1 ; Moez Abdennadhar 1 ; Tahar Fakhfakh 1 ; Rachid Nasri 2 ; Mohamed Haddar 1

1 Mechanical Modeling and Manufacturing Laboratory (LA2MP), National School of Engineers of Sfax, University of Sfax, BP 1173-3038, Sfax, Tunisia
2 Applied Mechanics and Engineering, University of El-Manar II, 1002 Tunis, Tunisia
@article{CRMECA_2017__345_12_807_0,
     author = {Marwa Bouslema and Ahmed Frikha and Moez Abdennadhar and Tahar Fakhfakh and Rachid Nasri and Mohamed Haddar},
     title = {Effects of modal truncation and condensation methods on the {Frequency} {Response} {Function} of a stage reducer connected by rigid coupling to a planetary gear system},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {807--823},
     publisher = {Elsevier},
     volume = {345},
     number = {12},
     year = {2017},
     doi = {10.1016/j.crme.2017.09.008},
     language = {en},
}
TY  - JOUR
AU  - Marwa Bouslema
AU  - Ahmed Frikha
AU  - Moez Abdennadhar
AU  - Tahar Fakhfakh
AU  - Rachid Nasri
AU  - Mohamed Haddar
TI  - Effects of modal truncation and condensation methods on the Frequency Response Function of a stage reducer connected by rigid coupling to a planetary gear system
JO  - Comptes Rendus. Mécanique
PY  - 2017
SP  - 807
EP  - 823
VL  - 345
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2017.09.008
LA  - en
ID  - CRMECA_2017__345_12_807_0
ER  - 
%0 Journal Article
%A Marwa Bouslema
%A Ahmed Frikha
%A Moez Abdennadhar
%A Tahar Fakhfakh
%A Rachid Nasri
%A Mohamed Haddar
%T Effects of modal truncation and condensation methods on the Frequency Response Function of a stage reducer connected by rigid coupling to a planetary gear system
%J Comptes Rendus. Mécanique
%D 2017
%P 807-823
%V 345
%N 12
%I Elsevier
%R 10.1016/j.crme.2017.09.008
%G en
%F CRMECA_2017__345_12_807_0
Marwa Bouslema; Ahmed Frikha; Moez Abdennadhar; Tahar Fakhfakh; Rachid Nasri; Mohamed Haddar. Effects of modal truncation and condensation methods on the Frequency Response Function of a stage reducer connected by rigid coupling to a planetary gear system. Comptes Rendus. Mécanique, Volume 345 (2017) no. 12, pp. 807-823. doi : 10.1016/j.crme.2017.09.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.09.008/

[1] R. Parker; J. Lin Parametric resonance in two stage gears from fluctuating mesh stiffness, Int. J. Gearing Transm., Volume 3 (2001), pp. 127-134

[2] R. Parker; J. Lin Mesh stiffness variation instabilities in two stage gear systems, J. Vib. Acoust., Volume 124 (2002), pp. 68-76

[3] J.D. Smith; F. Cunliffe; D.B. Welbourn Dynamic tooth loads in epicyclic gears, J. Eng. Ind., Volume 94 (1974), pp. 578-584

[4] A. Kahraman; R. Singh Non-linear dynamic analysis of a geared rotor-bearing system with multiple clearances, J. Sound Vib., Volume 144 (1991), pp. 469-506

[5] A. Kahraman Effect of axial vibrations on the dynamics of a helical gear pair, Trans. Am. Soc. Mech. Eng., Volume 115 (1993), pp. 33-39

[6] A. Bodas; A. Kahraman Influence of carrier and gear manufacturing errors on the static load sharing behavior of planetary gear sets, JSME Int. J., Volume 47 (2004) no. 3, pp. 908-915

[7] V. Abousleiman; P. Velex A hybrid 3D finite element/lumped parameter model for quasi-static and dynamic analyses of planetary/epicyclic gear sets, Mech. Mach. Theory, Volume 41 (2006), pp. 725-748

[8] A. Kahraman Planetary gear train dynamics, J. Mech. Des., Volume 116 (1994) no. 3, pp. 713-720

[9] F. Chaari; R. Hbaeib; T. Fakhfakh; M. Haddar Dynamic response simulation of planetary gears by the iterative spectral method, Int. J. Simul. Model., Volume 4 (2005), pp. 35-45

[10] Y. Guo; R.G. Parker Sensitivity of general compound planetary gear natural frequencies and vibration modes to model parameters, J. Vib. Acoust., Volume 132 (2010) no. 1

[11] J. Peeters; D. Vandepitte; P. Sas; S. Lammens Comparison of analysis techniques for the dynamic behaviour of an integrated drivetrain in a wind turbine, Proceedings of ISMA 2002, Department of Mechanical Engineering, K.U. Leuven, Belgium, 2002

[12] F. Vanhollebeke; J. Helsen Multibody modelling of varying complexity for modal behaviour analysis of wind turbine gearboxes, Renew. Energy, Volume 36 (2011), pp. 3098-3113

[13] J. Wei; C. Lv; W. Sun A study on optimum design method of gear transmission system for wind turbine, Int. J. Precis. Eng. Manuf., Volume 14 (2013) no. 5, pp. 767-778

[14] J. Wang; D. Qin; T.C. Lim Flexible multibody dynamic modeling of a horizontal wind turbine drivetrain system, J. Mech. Des., Volume 131 (2009), pp. 1-8

[15] J. Peeters; D. Vandepitte; P. Sas Structural analysis of a wind turbine and its drive train using the flexible multibody simulation technique, Proceedings of ISMA2006, Department of Mechanical Engineering, K.U. Leuven, Belgium, 2006

[16] F. Zhipeng; Z.J. Zuo Vibration signal models for fault diagnosis of planetary gearboxes, J. Sound Vib., Volume 331 (2012), pp. 4919-4939

[17] B. Jetmundsen; R.L. Bielawa; W.G. Flannelly Generalized frequency domain substructure synthesis, J. Am. Helicopter Soc., Volume 33 (1988) no. 1, pp. 55-64

[18] R.E.D. Bishop; D.C. Johnson The Mechanics of Vibration, Cambridge University Press, 1960

[19] D. Otte; J. Leuridan; H. Grangier; R. Aquilina Prediction of the dynamics of structural assemblies using measured FRF data: some improved data enhancement techniques, London (1991), pp. 909-918

[20] T.C. Lim; G.C. Steyer An improved numerical procedure for coupling of dynamic components using frequency response functions, London (1991), pp. 902-908

[21] T.C. Lim; J. Zhen; G. Lu Determination of system vibratory response characteristics applying a spectral-based inverse sub-structuring approach. Part I: analytical formulation, Int. J. Veh. Noise Vib., Volume 1 (2004), pp. 1-30

[22] B.L. Choi; J.M. Park Application of the impedance coupling method and the equivalent rotor model in rotordynamics, Finite Elem. Anal. Des., Volume 39 (2002) no. 2, pp. 93-106

[23] W. D'Ambrogio; A. Fregolent Promises and pitfalls of decoupling procedures, Bethel, CT, USA (2008)

[24] A. Erturk; H.N. Ozguven; E. Budak Analytical modeling of spindle-tool dynamics on machine tools using Timoshenko beam model and receptance coupling for the prediction of tool point FRF, Int. J. Mach. Tools Manuf., Volume 46 (2006), pp. 1901-1912

[25] W. D'Ambrogio; A. Fregolent The role of interface DoFs in decoupling of substructures based on the dual domain decomposition, Mech. Syst. Signal Process., Volume 24 (2010), pp. 2035-2048

[26] K. Cuppens; P. Sas; L. Hermans Evaluation of the FRF based substructuring and modal synthesis technique applied to vehicle FE data, Leuven (2003)

[27] W. D'Ambrogio; A. Fregolent Decoupling procedures in the general framework of frequency based substructuring, Proceedings of the IMAC-XXVII, 2009

[28] A.P. Vale Urgueira Dynamic Analysis of Coupled Structures Using Experimental Data, University of London, 1989 (PhD thesis)

[29] J. Peeters Simulation of Dynamic Drive Train Loss in a Wind Turbine, Departement Werktuigkunde, Katholieke Universiteit Leuven, Belgium, 2006 (PhD thesis)

[30] W. D'Ambrogio; A. Fregolent Decoupling of a substructure from modal data of the complete structure, Leuven, Belgium ( January 2004 ), pp. 2693-2706

[31] U. Tabak; B. Besselink; D.J. Rixen A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control, J. Sound Vib., Volume 332 (2013), pp. 4403-4422

[32] L.E. Suarez; E.E. Matheu A modal synthesis technique based on the force derivative method, J. Vib. Acoust., Volume 114 (1992), pp. 209-216

[33] J. Lin; R.G. Parker Analytical characterization of the unique properties of planetary gear free vibration, J. Vib. Acoust., Volume 121 (1999), pp. 316-321

[34] P. Sjovall; T. Abrahamssoon Substructure system identification from coupled system test data, Mech. Syst. Signal Process., Volume 22 (2008) no. 1, pp. 15-33

[35] K.M. Al-hussain; I. Remond Dynamic response of two rotors connected by rigid mechanical coupling with parallel misalignment, J. Sound Vib., Volume 249 (2002) no. 3, pp. 483-498

[36] D. de Klerk; D. Rixen; J. de Jong The frequency based substructuring (FBS) method reformulated according to the dual domain decomposition method, St. Louis, MO (2006) (Paper 136)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Effect of elastic couplings on the dynamic behavior of transmission systems

Marwa Bouslema; Taher Fakhfakh; Rachid Nasri; ...

C. R. Méca (2022)


Modal energetic analysis and dynamic response of worm gear drives with a new developed dynamic model

Ala Eddin Chakroun; Ahmed Hammami; Ana De-Juan; ...

C. R. Méca (2021)


Simulating the dynamic behavior of planetary gearbox based on improved Hanning function

Oussama Graja; Bacem Zghal; Kajetan Dziedziech; ...

C. R. Méca (2019)