We investigate the sedimentation properties of quasi-neutrally buoyant inertial particles carried by incompressible zero-mean fluid flows. We obtain generic formulae for the terminal velocity in generic space-and-time periodic (or steady) flows, along with further information for flows endowed with some degree of spatial symmetry such as odd parity in the vertical direction. These expressions consist in space-time integrals of auxiliary quantities that satisfy partial differential equations of the advection–diffusion–reaction type, which can be solved at least numerically, since our scheme implies a huge reduction of the problem dimensionality from the full phase space to the classical physical space.
Nous étudions les propriétés de sédimentation de particules inertielles dotées de flottabilité quasi neutre et transportées par un écoulement incompressible à moyenne nulle. Nous obtenons des formules génériques pour la vitesse terminale dans des écoulements en général périodiques en espace et en temps (ou statiques), avec d'ultérieures informations disponibles pour les écoulements dotés de symétries spatiales spécifiques, telles qu'une parité négative dans la direction verticale. Ces expressions consistent en des intégrales spatio-temporelles de quantités auxiliaires qui obéissent à des équations aux dérivées partielles du type advection–diffusion–réaction. Ces dernières peuvent être résolues au moins numériquement, car notre procédure implique une forte réduction de la dimensionnalité du problème, de l'espace des phases complet à l'espace physique classique.
Accepted:
Published online:
Mot clés : Dynamique des fluides, Particules inertielles, Vitesse de sédimentation, Flottabilité quasi neutre, Flux stationnaires/périodiques/cellulaires, Diffusivité brownienne
Marco Martins Afonso 1; Sílvio M.A. Gama 1
@article{CRMECA_2018__346_2_121_0, author = {Marco Martins Afonso and S{\'\i}lvio M.A. Gama}, title = {Settling velocity of quasi-neutrally-buoyant inertial particles}, journal = {Comptes Rendus. M\'ecanique}, pages = {121--131}, publisher = {Elsevier}, volume = {346}, number = {2}, year = {2018}, doi = {10.1016/j.crme.2017.11.005}, language = {en}, }
Marco Martins Afonso; Sílvio M.A. Gama. Settling velocity of quasi-neutrally-buoyant inertial particles. Comptes Rendus. Mécanique, Volume 346 (2018) no. 2, pp. 121-131. doi : 10.1016/j.crme.2017.11.005. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.11.005/
[1] On a kinetic equation for the transport of particles in turbulent flows, Phys. Fluids A, Volume 3 (1991) no. 3, pp. 446-456
[2] On the continuum equations for dispersed particles in nonuniform flows, Phys. Fluids A, Volume 4 (1992) no. 6, pp. 1290-1303
[3] Intermittent distribution of inertial particles in turbulent flows, Phys. Rev. Lett., Volume 86 (2001), pp. 2790-2793
[4] Fractal clustering of inertial particles in random flows, Phys. Fluids, Volume 15 (2003), p. L81-L84
[5] Path coalescence transition and its applications, Phys. Rev. E, Volume 68 (2003)
[6] Intermittent distribution of heavy particles in a turbulent flow, Phys. Fluids, Volume 16 (2004), p. L47-L50
[7] Lagrangian statistics for fluid particles and bubbles in turbulence, New J. Phys., Volume 6 (2004), pp. 1-28
[8] Dynamics and statistics of heavy particles in turbulent flows, J. Turbul., Volume 7 (2006) no. 36, pp. 1-36
[9] Acceleration of heavy and light particles in turbulence: comparison between experiments and direct numerical simulations, Physica D, Volume 237 (2008), pp. 2084-2089
[10] Chaotic flow: the physics of species coexistence, Proc. Natl. Acad. Sci., Volume 97 (2000), pp. 13661-13665
[11] Multidimensional simulation of cavitating flows in diesel injectors by a homogeneous mixture modeling approach, Atomiz. Spr., Volume 18 (2008) no. 2, pp. 129-162
[12] The growth of structure in the intergalactic medium, Mon. Not. R. Astron. Soc., Volume 329 (2002), pp. 37-60
[13] Acceleration of rain initiation by cloud turbulence, Nature, Volume 419 (2002), pp. 151-154
[14] Statistical Fluid Mechanics, MIT Press, Cambridge, 1975
[15] An integral representation and bounds on the effective diffusivity in passive advection and turbulent flows, Commun. Math. Phys., Volume 138 (1991), pp. 339-391
[16] Subtle statistical behavior in simple models for random advection–diffusion, J. Math. Sci. Univ. Tokyo, Volume 1 (1994), pp. 23-70
[17] Interference between turbulent and molecular diffusion, Europhys. Lett., Volume 37 (1997) no. 8, pp. 535-540
[18] Multiple-scale analysis and renormalization for preasymptotic scalar transport, Phys. Rev. E, Volume 71 (2005)
[19] Large-scale effects on meso-scale modeling for scalar transport, Physica D, Volume 220 (2006), pp. 146-156
[20] Suppression of eddy diffusivity across jets in the Southern ocean, J. Phys. Oceanogr., Volume 40 (2010), pp. 1501-1519
[21] Combined role of molecular diffusion, mean streaming and helicity in the eddy diffusivity of short-correlated random flows, J. Stat. Mech., Volume 2016 (2016) no. 10
[22] Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids, Volume 26 (1983) no. 4, pp. 883-889
[23] The Faxén formulae for a rigid particle in an unsteady non-uniform Stokes flow, J. Méc. Théor. Appl., Volume 1 (1983), pp. 143-160
[24] The relationship between Brownian motion and the random motion of small particles in a turbulent flow, Phys. Fluids, Volume 31 (1988), pp. 1314-1316
[25] Stochastic problems in physics and astronomy, Rev. Mod. Phys., Volume 15 (1943), pp. 1-89
[26] Handbook of Stochastic Methods: For Physics, Chemistry and the Natural Sciences, Springer, Berlin, 1985
[27] The Fokker–Planck Equation: Methods of Solutions and Applications, Springer, Berlin, 1989
[28] Stochastic Processes in Physics and Chemistry, Elsevier, Amsterdam, 2007
[29] Gravitational settling of aerosol particles in randomly oriented cellular flow fields, J. Atmos. Sci., Volume 43 (1986) no. 11, pp. 1112-1134
[30] The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields, J. Fluid Mech., Volume 174 (1987), pp. 441-465
[31] The motion of small spherical particles in a cellular flow field, Phys. Fluids, Volume 30 (1987), pp. 1915-1928
[32] Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence, J. Fluid Mech., Volume 256 (1993), pp. 27-68
[33] Mean rise rate of droplets in isotropic turbulence, Phys. Fluids, Volume 14 (2002), pp. 3059-3073
[34] Turbulence increases the average settling velocity of phytoplankton cell, Proc. Natl. Acad. Sci., Volume 101 (2004), pp. 17720-17724
[35] The terminal velocity of sedimenting particles in a flowing fluid, J. Phys. A, Volume 41 (2008) no. 38
[36] Dynamics of a small neutrally buoyant sphere in a fluid and targeting in Hamiltonian systems, Phys. Rev. Lett., Volume 84 (2000), pp. 5764-5767
[37] Influence of added mass on anomalous high rise velocity of light particles in cellular flow field: a note on the paper by Maxey (1987), Phys. Fluids, Volume 19 (2007)
[38] Instabilities in the dynamics of neutrally buoyant particles, Phys. Fluids, Volume 20 (2008) no. 017102, pp. 1-7
[39] Dispersion of passive tracers in a velocity field with non-δ-correlated noise, Phys. Rev. E, Volume 59 (1999) no. 4, pp. 3926-3934
[40] Eddy diffusivities of inertial particles in random Gaussian flows, Phys. Rev. Fluids, Volume 2 (2017)
[41] Point-source inertial particle dispersion, Geophys. Astrophys. Fluid Dyn., Volume 105 (2011) no. 6, pp. 553-565
[42] Eddy diffusivities for inertial particles under gravity, J. Fluid Mech., Volume 694 (2012), pp. 426-463
[43] Chaotic particle transport in time-dependent Rayleigh–Bénard convection, Phys. Rev. A, Volume 38 (1988), pp. 6280-6286
[44] On strong anomalous diffusion, Physica D, Volume 134 (1999), pp. 75-93
[45] Numerical study of strong anomalous diffusion, Physica A, Volume 280 (2000), pp. 60-68
[46] Numerical study of substrate assimilation by a microorganism exposed to fluctuating concentration, Chem. Eng. Sci., Volume 81 (2012), pp. 8-19
[47] Turbulence, Cambridge University Press, Cambridge, 1995
[48] Stieltjes integral representation of effective diffusivities in time-dependent flows, Phys. Rev. E, Volume 52 (1995) no. 3, pp. 3249-3251
[49] Eddy diffusivities in scalar transport, Phys. Fluids, Volume 7 (1995) no. 11, pp. 2725-2734
[50] Simple stochastic models showing strong anomalous diffusion, Eur. Phys. J. B, Volume 18 (2000), pp. 447-452
[51] Periodic homogenization for inertial particles, Physica D, Volume 204 (2005), pp. 161-187
[52] Advanced Mathematical Methods for Scientists and Engineers, McGraw–Hill, New York, 1978
[53] Asymptotic Analysis of Periodic Structures, North-Holland, Amsterdam, 1978
[54] Multiscale Methods: Averaging and Homogenization, Springer, Berlin, 2007
[55] Anomalous diffusion for inertial particles under gravity in parallel flows, Phys. Rev. E, Volume 89 (2014) no. 6
[56] Anomalous diffusion of inertial particles in random parallel flows: theory and numerics face to face, J. Stat. Mech., Volume 2015 (2015) no. 10
[57] On the theory of oscillatory waves, Trans. Cambridge Philos. Soc., Volume 8 (1847), pp. 441-473
[58] Eulerian and Lagrangian aspects of surface waves, J. Fluid Mech., Volume 173 (1986), pp. 683-707
[59] Stokes drift for inertial particles transported by water waves, Europhys. Lett., Volume 102 (2013) no. 1
[60] Point-source scalar turbulence, J. Fluid Mech., Volume 583 (2007), pp. 189-198
Cited by Sources:
Comments - Politique