Comptes Rendus
Limit analysis, rammed earth material and Casagrande test
Comptes Rendus. Mécanique, Volume 346 (2018) no. 2, pp. 98-109.

The present paper is concerned with the simulation of the Casagrande test carried out on a rammed earth material for wall-type structures in the framework of Limit Analysis (LA). In a preliminary study, the material is considered as a homogeneous Coulomb material, and existing LA static and kinematic codes are used for the simulation of the test. In each loading case, static and kinematic bounds coincide; the corresponding exact solution is a two-rigid-block mechanism together with a quasi-constant stress vector and a velocity jump also constant along the interface, for the three loading cases. In a second study, to take into account the influence of compressive loadings related to the porosity of the material, an elliptic criterion (denoted Cohesive Cam–Clay, CCC) is defined based on recent homogenization results about the hollow sphere model for porous Coulomb materials. Finally, original finite element formulations of the static and mixed kinematic methods for the CCC material are developed and applied to the Casagrande test. The results are the same than above, except that this time the velocity jump depends on the compressive loading, which is more realistic but not satisfying fully the experimental observations. Therefore, the possible extensions of this work towards non-standard direct methods are analyzed in the conclusion section.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2017.11.007
Keywords: Limit analysis, Lower and upper bound methods, Cohesive Cam–Clay material, Micromechanics identification, Casagrande geotechnical test, Conic programming

Ranime El-Nabouch 1; Joseph Pastor 1; Quoc-Bao Bui 1, 2; Olivier Plé 1

1 Université Savoie Mont Blanc, CNRS, LOCIE, 73000 Chambéry, France
2 Ton Duc Thang University, Faculty of Civil Engineering, Ho Chi Minh City, Viet Nam
@article{CRMECA_2018__346_2_98_0,
     author = {Ranime El-Nabouch and Joseph Pastor and Quoc-Bao Bui and Olivier Pl\'e},
     title = {Limit analysis, rammed earth material and {Casagrande} test},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {98--109},
     publisher = {Elsevier},
     volume = {346},
     number = {2},
     year = {2018},
     doi = {10.1016/j.crme.2017.11.007},
     language = {en},
}
TY  - JOUR
AU  - Ranime El-Nabouch
AU  - Joseph Pastor
AU  - Quoc-Bao Bui
AU  - Olivier Plé
TI  - Limit analysis, rammed earth material and Casagrande test
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 98
EP  - 109
VL  - 346
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2017.11.007
LA  - en
ID  - CRMECA_2018__346_2_98_0
ER  - 
%0 Journal Article
%A Ranime El-Nabouch
%A Joseph Pastor
%A Quoc-Bao Bui
%A Olivier Plé
%T Limit analysis, rammed earth material and Casagrande test
%J Comptes Rendus. Mécanique
%D 2018
%P 98-109
%V 346
%N 2
%I Elsevier
%R 10.1016/j.crme.2017.11.007
%G en
%F CRMECA_2018__346_2_98_0
Ranime El-Nabouch; Joseph Pastor; Quoc-Bao Bui; Olivier Plé. Limit analysis, rammed earth material and Casagrande test. Comptes Rendus. Mécanique, Volume 346 (2018) no. 2, pp. 98-109. doi : 10.1016/j.crme.2017.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.11.007/

[1] P. Thoré; F. Pastor; J. Pastor; D. Kondo Closed form solutions for the hollow sphere model with Coulomb and Drucker–Prager materials under isotropic loadings, C. R. Mecanique, Volume 337 (2009), pp. 260-267

[2] J. Pastor; P. Thoré; F. Pastor Limit analysis and numerical modeling of spherically porous solids with Coulomb and Drucker–Prager matrices, J. Comput. Appl. Math., Volume 234 (2010), pp. 2162-2174

[3] F. Pastor; K. Anoukou; J. Pastor; D. Kondo Limit analysis and homogenization of porous materials with Mohr–Coulomb matrix. Part II: Numerical bounds and assessment of the theoretical model, J. Mech. Phys. Solids, Volume 91 (2016), pp. 14-27

[4] MOSEK ApS, C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen ϕ, Denmark, http://www.mosek.com, 2010.

[5] R. El-Nabouch; Q.-B. Bui; N. Prime; P. Perrotin; O. Plé Comportement de murs en pisé sous poussée progressive : étude expérimentale et numérique, 2016 (Rencontres Universitaires de Génie Civil)

[6] R. El-Nabouch Mechanical Behavior of Rammed Earth Walls Under Pushover Tests, Université Savoie Mont Blanc, June 2017 (Thèse de doctorat de la communauté université Grenoble Alpes)

[7] J. Pastor Analyse limite : détermination numérique de solutions statiques complètes. Application au talus vertical, J. Méc. Appl. (now Eur. J. Mech. A, Solids), Volume 2 (1978), pp. 167-196

[8] R. Abdi; P. de Buhan; J. Pastor Calculation of the critical height of a homogenized reinforced soil wall: a numerical approach, Int. J. Numer. Anal. Methods Geomech., Volume 18 (1994), pp. 485-505

[9] A.L. Gurson Continuum theory of ductile rupture by void nucleation and growth – part I: Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., Volume 99 (1977), pp. 2-15

[10] K. Anoukou; F. Pastor; P. Dufresnoy; D. Kondo Limit analysis and homogenization of porous materials with Mohr–Coulomb matrix. Part I: Theoretical formulation, J. Mech. Phys. Solids, Volume 91 (2016), pp. 145-171

[11] A. Schofield; A. Wroth Critical State Soil Mechanics, McGraw-Hill, 1968

[12] K.H. Roscoe; J.H. Burland On the generalized stress-strain behaviour of wet clay (J. Heyman; J. Leckie, eds.), Engineering Plasticity, 1968

[13] E.E. Alonso; A. Gens; A. Josa A constitutive model for partially saturated soils, Géotechnique, Volume 40 (1990) no. 3, pp. 405-430

[14] R.I. Borja Cam–clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media, Comput. Methods Appl. Mech. Eng., Volume 193 (2004), pp. 5301-5338

[15] F. Pastor; J. Pastor; D. Kondo Numerical limit analysis and plasticity criterion of a porous Coulomb material with elliptic cylindrical voids, C. R. Mecanique, Volume 343 (2015), pp. 199-200

[16] F. Pastor Résolution par des méthodes de point intérieur de problèmes de programmation convexe posés par l'analyse limite, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium, 2007 (Thèse de doctorat)

[17] F. Pastor; E. Loute; J. Pastor; M. Trillat Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach, Eur. J. Mech. A, Solids, Volume 28 (2009), pp. 25-35

[18] F. Pastor; D. Kondo; J. Pastor 3D-FEM formulations of limit analysis methods for porous pressure-sensitive materials, Int. J. Numer. Methods Eng., Volume 95 (2013), pp. 847-870

[19] A. Drescher; E. Detournay Limit load in translational materials for associated and non-associated materials, Géotechnique, Volume 43 (1993), pp. 443-456

[20] G. de Saxcé Une généralisation de l'inégalité de Frenchel et ses applications aux lois constitutives, C. R. Acad. Sci., Volume 314 (1992), pp. 125-129

[21] M. Hamlaoui; A. Oueslati; G. de Saxcé A bipotential approach for plastic limit loads of strip footings with non-associated materials, Int. J. Non-Linear Mech., Volume 90 (2017), pp. 1-10

[22] N. Zouain; I.P. Filho; L. Borges; L.M. da Costa Plastic collapse in non-associated hardening materials with application to Cam–clay, Int. J. Solids Struct., Volume 44 (2007), pp. 4382-4398

[23] G. de Saxcé The bipotential method, a new variational and numerical treatment of the dissipative laws of materials, Boston, MA, USA (1995)

Cited by Sources:

Comments - Policy