The present paper is concerned with the simulation of the Casagrande test carried out on a rammed earth material for wall-type structures in the framework of Limit Analysis (LA). In a preliminary study, the material is considered as a homogeneous Coulomb material, and existing LA static and kinematic codes are used for the simulation of the test. In each loading case, static and kinematic bounds coincide; the corresponding exact solution is a two-rigid-block mechanism together with a quasi-constant stress vector and a velocity jump also constant along the interface, for the three loading cases. In a second study, to take into account the influence of compressive loadings related to the porosity of the material, an elliptic criterion (denoted Cohesive Cam–Clay, CCC) is defined based on recent homogenization results about the hollow sphere model for porous Coulomb materials. Finally, original finite element formulations of the static and mixed kinematic methods for the CCC material are developed and applied to the Casagrande test. The results are the same than above, except that this time the velocity jump depends on the compressive loading, which is more realistic but not satisfying fully the experimental observations. Therefore, the possible extensions of this work towards non-standard direct methods are analyzed in the conclusion section.
Accepted:
Published online:
Ranime El-Nabouch 1; Joseph Pastor 1; Quoc-Bao Bui 1, 2; Olivier Plé 1
@article{CRMECA_2018__346_2_98_0, author = {Ranime El-Nabouch and Joseph Pastor and Quoc-Bao Bui and Olivier Pl\'e}, title = {Limit analysis, rammed earth material and {Casagrande} test}, journal = {Comptes Rendus. M\'ecanique}, pages = {98--109}, publisher = {Elsevier}, volume = {346}, number = {2}, year = {2018}, doi = {10.1016/j.crme.2017.11.007}, language = {en}, }
TY - JOUR AU - Ranime El-Nabouch AU - Joseph Pastor AU - Quoc-Bao Bui AU - Olivier Plé TI - Limit analysis, rammed earth material and Casagrande test JO - Comptes Rendus. Mécanique PY - 2018 SP - 98 EP - 109 VL - 346 IS - 2 PB - Elsevier DO - 10.1016/j.crme.2017.11.007 LA - en ID - CRMECA_2018__346_2_98_0 ER -
Ranime El-Nabouch; Joseph Pastor; Quoc-Bao Bui; Olivier Plé. Limit analysis, rammed earth material and Casagrande test. Comptes Rendus. Mécanique, Volume 346 (2018) no. 2, pp. 98-109. doi : 10.1016/j.crme.2017.11.007. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2017.11.007/
[1] Closed form solutions for the hollow sphere model with Coulomb and Drucker–Prager materials under isotropic loadings, C. R. Mecanique, Volume 337 (2009), pp. 260-267
[2] Limit analysis and numerical modeling of spherically porous solids with Coulomb and Drucker–Prager matrices, J. Comput. Appl. Math., Volume 234 (2010), pp. 2162-2174
[3] Limit analysis and homogenization of porous materials with Mohr–Coulomb matrix. Part II: Numerical bounds and assessment of the theoretical model, J. Mech. Phys. Solids, Volume 91 (2016), pp. 14-27
[4] MOSEK ApS, C/O Symbion Science Park, Fruebjergvej 3, Box 16, 2100 Copenhagen ϕ, Denmark, http://www.mosek.com, 2010.
[5] Comportement de murs en pisé sous poussée progressive : étude expérimentale et numérique, 2016 (Rencontres Universitaires de Génie Civil)
[6] Mechanical Behavior of Rammed Earth Walls Under Pushover Tests, Université Savoie Mont Blanc, June 2017 (Thèse de doctorat de la communauté université Grenoble Alpes)
[7] Analyse limite : détermination numérique de solutions statiques complètes. Application au talus vertical, J. Méc. Appl. (now Eur. J. Mech. A, Solids), Volume 2 (1978), pp. 167-196
[8] Calculation of the critical height of a homogenized reinforced soil wall: a numerical approach, Int. J. Numer. Anal. Methods Geomech., Volume 18 (1994), pp. 485-505
[9] Continuum theory of ductile rupture by void nucleation and growth – part I: Yield criteria and flow rules for porous ductile media, J. Eng. Mater. Technol., Volume 99 (1977), pp. 2-15
[10] Limit analysis and homogenization of porous materials with Mohr–Coulomb matrix. Part I: Theoretical formulation, J. Mech. Phys. Solids, Volume 91 (2016), pp. 145-171
[11] Critical State Soil Mechanics, McGraw-Hill, 1968
[12] On the generalized stress-strain behaviour of wet clay (J. Heyman; J. Leckie, eds.), Engineering Plasticity, 1968
[13] A constitutive model for partially saturated soils, Géotechnique, Volume 40 (1990) no. 3, pp. 405-430
[14] Cam–clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media, Comput. Methods Appl. Mech. Eng., Volume 193 (2004), pp. 5301-5338
[15] Numerical limit analysis and plasticity criterion of a porous Coulomb material with elliptic cylindrical voids, C. R. Mecanique, Volume 343 (2015), pp. 199-200
[16] Résolution par des méthodes de point intérieur de problèmes de programmation convexe posés par l'analyse limite, Facultés universitaires Notre-Dame de la Paix, Namur, Belgium, 2007 (Thèse de doctorat)
[17] Mixed method and convex optimization for limit analysis of homogeneous Gurson materials: a kinematical approach, Eur. J. Mech. A, Solids, Volume 28 (2009), pp. 25-35
[18] 3D-FEM formulations of limit analysis methods for porous pressure-sensitive materials, Int. J. Numer. Methods Eng., Volume 95 (2013), pp. 847-870
[19] Limit load in translational materials for associated and non-associated materials, Géotechnique, Volume 43 (1993), pp. 443-456
[20] Une généralisation de l'inégalité de Frenchel et ses applications aux lois constitutives, C. R. Acad. Sci., Volume 314 (1992), pp. 125-129
[21] A bipotential approach for plastic limit loads of strip footings with non-associated materials, Int. J. Non-Linear Mech., Volume 90 (2017), pp. 1-10
[22] Plastic collapse in non-associated hardening materials with application to Cam–clay, Int. J. Solids Struct., Volume 44 (2007), pp. 4382-4398
[23] The bipotential method, a new variational and numerical treatment of the dissipative laws of materials, Boston, MA, USA (1995)
Cited by Sources:
Comments - Policy