Comptes Rendus
Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials
Comptes Rendus. Mécanique, Volume 346 (2018) no. 6, pp. 460-476.

In order to study the influence of particle shape on the microstructure evolution and the mechanical properties of granular materials, a two-dimensional DEM analysis of samples with three particle shapes, including circular particles, triangular particles, and elongated particles, is proposed here to simulate the direct shear tests of coarse-grained soils. For the numerical test results, analyses are conducted in terms of particle rotations, fabric evolution, and average path length evolution. A modified Rowe's stress–dilatancy equation is also proposed and successfully fitted onto simulation data.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.03.006
Keywords: Particle shape, Direct shear simulation, Particle rotation, Fabric evolution, Average path length, Rowe's stress–dilatancy

Jianqiu Tian 1; Enlong Liu 1, 2; Lian Jiang 1; Xiaoqiong Jiang 1; Yi Sun 1; Ran Xu 3

1 State Key Laboratory of Hydraulics and Mountain River Engineering College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
2 Northwest Institute of Eco-Environment and Resources, State Key Laboratory of Frozen Soil Engineering, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
3 Institution of Disaster Management and Reconstruction, Sichuan University, Chengdu 610207, China
@article{CRMECA_2018__346_6_460_0,
     author = {Jianqiu Tian and Enlong Liu and Lian Jiang and Xiaoqiong Jiang and Yi Sun and Ran Xu},
     title = {Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {460--476},
     publisher = {Elsevier},
     volume = {346},
     number = {6},
     year = {2018},
     doi = {10.1016/j.crme.2018.03.006},
     language = {en},
}
TY  - JOUR
AU  - Jianqiu Tian
AU  - Enlong Liu
AU  - Lian Jiang
AU  - Xiaoqiong Jiang
AU  - Yi Sun
AU  - Ran Xu
TI  - Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 460
EP  - 476
VL  - 346
IS  - 6
PB  - Elsevier
DO  - 10.1016/j.crme.2018.03.006
LA  - en
ID  - CRMECA_2018__346_6_460_0
ER  - 
%0 Journal Article
%A Jianqiu Tian
%A Enlong Liu
%A Lian Jiang
%A Xiaoqiong Jiang
%A Yi Sun
%A Ran Xu
%T Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials
%J Comptes Rendus. Mécanique
%D 2018
%P 460-476
%V 346
%N 6
%I Elsevier
%R 10.1016/j.crme.2018.03.006
%G en
%F CRMECA_2018__346_6_460_0
Jianqiu Tian; Enlong Liu; Lian Jiang; Xiaoqiong Jiang; Yi Sun; Ran Xu. Influence of particle shape on the microstructure evolution and the mechanical properties of granular materials. Comptes Rendus. Mécanique, Volume 346 (2018) no. 6, pp. 460-476. doi : 10.1016/j.crme.2018.03.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.03.006/

[1] J. Yang; X.D. Luo Exploring the relationship between critical state and particle shape for granular materials, J. Mech. Phys. Solids, Volume 84 (2015), pp. 196-213

[2] C. Nouguier-Lehon Effect of the grain elongation on the behaviour of granular materials in biaxial compression, C. R. Mecanique, Volume 338 (2010), pp. 587-595

[3] D. Höhner; S. Wirtz; V. Scherer A study on the influence of particle shape on the mechanical interactions of granular media in a hopper using the Discrete Element Method, Powder Technol., Volume 278 (2015), pp. 286-305

[4] S. Zhao; X. Zhou Effects of particle asphericity on the macro- and micro-mechanical behaviors of granular assemblies, Granul. Matter, Volume 19 (2017), p. 38 | DOI

[5] Y. Yang; Y.M. Cheng; Q.C. Sun The effects of rolling resistance and non-convex particle on the mechanics of the undrained granular assemblies in 2D, Powder Technol., Volume 318 (2017), pp. 528-542

[6] K. Shinohara; M. Oida; B. Golman Effect of particle shape on angle of internal friction by triaxial compression test, Powder Technol., Volume 107 (2000), pp. 131-136

[7] G.C. Cho; J. Dodds; J.C. Santamarina Particle shape effects on packing density, stiffness, and strength: natural and crushed sands, J. Geotech. Geoenviron. Eng., Volume 132 (2006), pp. 591-602

[8] J. Yang; L.M. Wei Collapse of loose sand with the addition of fines: the role of particle shape, Géotechnique, Volume 62 (2012), pp. 1111-1125

[9] J. Reimann; J. Vicente; E. Brun; C. Ferrero; Y. Gan; A. Rack X-ray tomography investigations of mono-sized sphere packing structures in cylindrical containers, Powder Technol., Volume 318 (2017), pp. 471-483

[10] M. Goudarzy; D. König; T. Schanz Small strain stiffness of granular materials containing fines, Soil Found., Volume 56 (2016), pp. 756-764

[11] M. Oda A mechanical and statistical model of granular material, Soil Found., Volume 14 (1974), pp. 13-27

[12] P.A. Cundall; O.D.L. Strack A discrete numerical model for granular assemblies, Géotechnique, Volume 29 (1979), pp. 47-65

[13] L. Cui; C. O'Sullivan Exploring the macro- and micro-scale response of an idealized granular material in the direct shear apparatus, Géotechnique, Volume 56 (2006), pp. 455-468

[14] C. Nouguier-Lehon; B. Cambou; E. Vincens Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis, Int. J. Numer. Anal. Methods, Volume 27 (2003), pp. 1207-1226

[15] S. Zhao; X. Zhou; W. Liu Discrete element simulations of direct shear tests with particle angularity effect, Granul. Matter, Volume 17 (2015), pp. 793-806

[16] A.A. Peña; A. Lizcano; F. Alonso-Marroquin; H.J. Herrmann Biaxial test simulations using a packing of polygonal particles, Int. J. Numer. Anal. Methods, Volume 32 (2008), pp. 143-160

[17] W.M. Yan Fabric evolution in a numerical direct shear test, Comput. Geotech., Volume 36 (2009), pp. 597-603

[18] S. Zhao; N. Zhang; X. Zhou; L. Zhang Particle shape effects on fabric of granular random packing, Powder Technol., Volume 320 (2017), pp. 175-186

[19] A. Tordesillas; P. O'Sullivan; D.M. Walker; Paramitha Evolution of functional connectivity in contact and force chain networks: feature vectors, k-cores and minimal cycles, C. R. Mecanique, Volume 338 (2010), pp. 556-569

[20] D.M. Walker; A. Tordesillas Topological evolution in dense granular materials: a complex networks perspective, Int. J. Solids Struct., Volume 47 (2010), pp. 624-639

[21] C. Thornton; D.J. Barnes Computer simulated deformation of compact granular assemblies, Acta Mech., Volume 64 (1986), pp. 45-61

[22] M.R. Kuhn Micro-mechanics of fabric and failure in granular materials, Mech. Mater., Volume 42 (2010), pp. 827-840

[23] R. Wang; P. Fu; J.M. Zhang; Y.F. Dafalias Evolution of various fabric tensors for granular media toward the critical state, J. Eng. Mech., Volume 143 (2017)

[24] N.P. Kruyt Micromechanical study of fabric evolution in quasi-static deformation of granular materials, Mech. Mater., Volume 44 (2012), pp. 120-129

[25] F. Nicot; L. Sibille; P.Y. Hicher Micro–macro analysis of granular material behavior along proportional strain paths, Contin. Mech. Thermodyn., Volume 27 (2015), pp. 173-193

[26] C.S. Chang; P.Y. Hicher An elasto-plastic model for granular materials with microstructural consideration, Int. J. Solids Struct., Volume 42 (2005), pp. 4258-4277

[27] J. Zhao; M. Jiang; K. Soga; S. Luding Micro origins for macro behavior in granular media, Granul. Matter, Volume 18 (2016), p. 59

[28] F. Altuhafi; C. O'Sullivan; I. Cavarretta Analysis of an image-based method to quantify the size and shape of sand particles, J. Geotech. Geoenviron. Eng., Volume 139 (2013), pp. 1290-1307

[29] L. Rothenburg; R.J. Bathurst Analytical study of induced anisotropy in idealized granular materials, Géotechnique, Volume 39 (1989), pp. 601-614

[30] L. da; F. Costa; F.A. Rodrigues; G. Travieso; P.R. Villas Boas Characterization of complex networks: a survey of measurements, Adv. Phys., Volume 56 (2007), pp. 167-242

[31] S. Sheng; Y. Dou; X. Tao; S. Zhu; B. Xu; Q. Li; X. Guo; X. He Specification of Soil Test SL237-1999 ed., China Water and Power Press, Beijing, 1999

[32] A.A. Mirghasemi; L. Rothenburg; E.L. Matyas Influence of particle shape on engineering properties of assemblies of two-dimensional polygon-shaped particles, Géotechnique, Volume 52 (2002), pp. 209-217

[33] GDR-MiDi On dense granular flows, Eur. Phys. J. E, Volume 14 (2004), pp. 341-365

[34] F. Radjai Force and fabric states in granular media, AIP Conf. Proc., Volume 1145 (2009), pp. 35-42

[35] D.-H. Nguyen; E. Azéma; P. Sornay; F. Radjai Effects of shape and size polydispersity on strength properties of granular materials, Phys. Rev. E, Volume 91 (2015)

[36] C. O'Sullivan Particulate Discrete Element Modelling, Spon Press, Oxon, 2011

[37] C. Thornton; L. Zhang Numerical simulation of the direct shear test, Chem. Eng. Technol., Volume 26 (2003), pp. 153-156

[38] J. Kozicki; M. Niedostatkiewicz; J. Tejchman; H.B. Muhlhaus Discrete modelling results of a direct shear test for granular materials versus FE results, Granul. Matter, Volume 15 (2013), pp. 607-627

[39] D.M. Mueth; G.F. Debregeas; G.S. Karczmar; P.J. Eng; S.R. Nagel; H.M. Jaeger Signatures of granular microstructure in dense shear flows, Nature, Volume 406 (2000), pp. 385-389

[40] D. Vågberg; P. Olsson; S. Teitel Shear banding, discontinuous shear thickening, and rheological phase transitions in athermally sheared frictionless disks, Phys. Rev. E, Volume 95 (2017)

[41] Z. Zhang; L. Chen; S. Zhou; L. Fang; J. Guan; T. Zou Analytical solution of average path length for Apollonian networks, Phys. Rev. E, Volume 77 (2008)

[42] Y.Y. Liu; J.J. Slotine; A.L. Barabási Controllability of complex networks, Nature, Volume 473 (2011), pp. 167-173

[43] J. Gao; B. Barzel; A.L. Barabási Universal resilience patterns in complex networks, Nature, Volume 530 (2016), pp. 307-312

[44] R. Bond Complex networks: network healing after loss, Nat. Hum. Behav., Volume 1 (2017), p. 87

[45] A. Ahmed; A. Thomo Computing source-to-target shortest paths for complex networks in RDBMS, J. Comput. Syst. Sci., Volume 89 (2017), pp. 114-129

[46] A. Gozzard; M. Ward; A. Datta Converting a network into a small-word network: fast algorithms for minimizing average path length through link addition, Inf. Sci., Volume 422 (2018), pp. 282-289

[47] P.W. Rowe The stress–dilatancy relation for static equilibrium of an assembly of particles in contact, Proc. R. Soc. Lond. Ser. A, Volume 269 (1962), pp. 500-527

[48] M. Gutierrez; J. Wang Non-coaxial version of Rowe's stress–dilatancy relation, Granul. Matter, Volume 11 (2009), pp. 129-137

[49] H. Ochiai The behaviour of sand in the direct shear test, Soil Found., Volume 15 (1975), pp. 93-100

[50] M. Gutierrez; K. Ishihara; I. Towhata Flow theory for sand during rotation of principal stress direction, Soil Found., Volume 31 (1991), pp. 121-132

[51] P.W. Rowe Theoretical meaning and observed values of deformation parameters for soil, Proceedings of The Roscoe Memorial Symposium, Cambridge University, 1971, pp. 143-194

Cited by Sources:

Comments - Policy