Highly concentrated moving nonlinearities are extremely difficult to solve numerically. The Selective Laser Melting Additive Manufacturing process is a problem of this kind. A material global-local scheme is proposed, which consists in describing the neighbourhood of the heat source by a moving local domain while the material phase fractions are represented in a global domain. The equations of the non-linear thermal problem are defined on the local domain only, assuming that the local domain is large enough to capture the most important variations of the temperature field. Additionally, a Hyper-Reduced-Order Model (HROM) is proposed for the local domain problem. The performance is studied by solving a SLM problem taken from the literature.
Les non-linéarités mobiles très concentrées sont extrêmement difficiles à résoudre numériquement. Le procédé de fabrication additive par fusion sélective au laser est un problème de ce genre. Un schéma global-local matériel est proposé, consistant à décrire le voisinage de la source de chaleur par un domaine local mobile alors que les fractions de phase matérielles sont représentées dans un domaine global. Les équations du problème thermique non linéaire sont définies sur le domaine local uniquement, en supposant que ce dernier est suffisamment grand pour capturer les variations les plus importantes du champ de température. De plus, un modèle d'ordre hyper-réduit (HROM) est proposé pour le problème du domaine local. La performance est étudiée en résolvant un problème SLM tiré de la littérature.
Accepted:
Published online:
Mot clés : Méthodes d'éléments finis, Modèle global-local matériel, Modèles réduits, Fusion sélective au laser
Alejandro Cosimo 1; Alberto Cardona 1; Sergio Idelsohn 1, 2
@article{CRMECA_2018__346_7_539_0, author = {Alejandro Cosimo and Alberto Cardona and Sergio Idelsohn}, title = {Global-local {HROM} for non-linear thermal problems with irreversible changes of material states}, journal = {Comptes Rendus. M\'ecanique}, pages = {539--555}, publisher = {Elsevier}, volume = {346}, number = {7}, year = {2018}, doi = {10.1016/j.crme.2018.04.002}, language = {en}, }
TY - JOUR AU - Alejandro Cosimo AU - Alberto Cardona AU - Sergio Idelsohn TI - Global-local HROM for non-linear thermal problems with irreversible changes of material states JO - Comptes Rendus. Mécanique PY - 2018 SP - 539 EP - 555 VL - 346 IS - 7 PB - Elsevier DO - 10.1016/j.crme.2018.04.002 LA - en ID - CRMECA_2018__346_7_539_0 ER -
%0 Journal Article %A Alejandro Cosimo %A Alberto Cardona %A Sergio Idelsohn %T Global-local HROM for non-linear thermal problems with irreversible changes of material states %J Comptes Rendus. Mécanique %D 2018 %P 539-555 %V 346 %N 7 %I Elsevier %R 10.1016/j.crme.2018.04.002 %G en %F CRMECA_2018__346_7_539_0
Alejandro Cosimo; Alberto Cardona; Sergio Idelsohn. Global-local HROM for non-linear thermal problems with irreversible changes of material states. Comptes Rendus. Mécanique, Volume 346 (2018) no. 7, pp. 539-555. doi : 10.1016/j.crme.2018.04.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.04.002/
[1] Numerical methods in phase-change problems, Arch. Comput. Methods Eng., Volume 1 (1994), pp. 49-74
[2] A fast convergent and accurate temperature model for phase-change heat conduction, Int. J. Numer. Methods Eng., Volume 44 (1999) no. 12, pp. 1863-1884
[3] Computational Welding Mechanics, Springer, 2005
[4] Model of radiation and heat transfer in laser-powder interaction zone at selective laser melting, J. Heat Transf., Volume 131 (2009) no. 7
[5] Implementation of a thermomechanical model for the simulation of selective laser melting, Comput. Mech., Volume 54 ( Apr. 2014 ) no. 1, pp. 33-51
[6] Global-Local ROM for the solution of parabolic problems with highly concentrated moving sources, Comput. Methods Appl. Mech. Eng., Volume 326 (2017), pp. 739-756
[7] Solution of non-linear thermal transient problems by a reduction method, Int. J. Numer. Methods Eng., Volume 23 (1986) no. 6, pp. 1023-1042
[8] Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids, Volume 72 (2013) no. 12, pp. 1219-1243
[9] Improving the k-compressibility of hyper reduced order models with moving sources: applications to welding and phase change problems, Comput. Methods Appl. Mech. Eng., Volume 274 (2014), pp. 237-263
[10] Discrete empirical interpolation for nonlinear model reduction, CDC/CCC 2009 (2009), pp. 4316-4321
[11] Dimensional hyper-reduction of nonlinear finite element models via empirical cubature, Comput. Methods Appl. Mech. Eng., Volume 313 (2017), pp. 687-722
[12] Reduced order modeling strategies for computational multiscale fracture, Comput. Methods Appl. Mech. Eng., Volume 313 (2017), pp. 560-595
[13] Optimizing cubature for efficient integration of subspace deformations, ACM Trans. Graph., Volume 27 ( Dec. 2008 ) no. 5, p. 165:1-165:10
[14] Dimensional reduction of nonlinear finite element dynamic models with finite rotations and energy-based mesh sampling and weighting for computational efficiency, Int. J. Numer. Methods Eng., Volume 98 ( Jun. 2014 ) no. 9, pp. 625-662
[15] Structure-preserving, stability, and accuracy properties of the energy-conserving sampling and weighting method for the hyper reduction of nonlinear finite element dynamic models, Int. J. Numer. Methods Eng., Volume 102 ( May 2015 ) no. 5, pp. 1077-1110
[16] Partitioned analysis of coupled mechanical systems, Comput. Methods Appl. Mech. Eng., Volume 190 (2001) no. 24–25, pp. 3247-3270
[17] Information transfer between incompatible finite element meshes: application to coupled thermo-viscoelasticity, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 44–47, pp. 6523-6541
[18] A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations, Comput. Methods Appl. Mech. Eng., Volume 199 (2010) no. 23–24, pp. 1603-1626
[19] A priori hyperreduction method: an adaptive approach, J. Comput. Phys., Volume 202 (2005) no. 1, pp. 346-366
[20] Turbulence and the dynamics of coherent structures. I – Coherent structures. II – Symmetries and transformations. III – Dynamics and scaling, Q. Appl. Math., Volume 45 ( Oct. 1987 ), pp. 561-571
[21] The fundamental theorem of linear algebra, Amer. Math. Mon., Volume 100 (1993) no. 9, pp. 848-855
[22] General treatment of essential boundary conditions in reduced order models for non-linear problems, Adv. Model. Simul. Eng. Sci., Volume 3 (2016) no. 7
[23] An enrichment scheme for solidification problems, Comput. Mech., Volume 52 (2013), pp. 17-35
[24] Solving Least Squares Problems, Society for Industrial and Applied Mathematics, 1995
[25] S. Voronin, P.-G. Martinsson, RSVDPACK: an implementation of randomized algorithms for computing the singular value, interpolative, and CUR decompositions of matrices on multi-core and GPU architectures, arXiv e-prints, February 2015.
Cited by Sources:
Comments - Policy