Comptes Rendus
Separated nozzle flow
Comptes Rendus. Mécanique, Volume 346 (2018) no. 9, pp. 844-854.

A separated turbulent flow in an axisymmetrical nozzle is studied numerically. Two configurations nozzle are investigated. The first one is the truncated ideal contour nozzle, DLR-TIC, is fed with nitrogen. The second configuration is called the thrust optimized contour nozzle or TOC type, ONERA-TOC, where the operating gas is a hot air. The classical pattern of a free shock separation is obtained for different values of the nozzle pressure ratio. The results are compared and validated using experimental data.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.06.009
Mots clés : Supersonic, Compressible, Nozzle flow, Axisymmetrical shock separation, Turbulence, URANS approach
Abderrahmane Nebbache 1

1 INSA de Rouen, LMFN–CORIA, UMR CNRS 6614, 76801 Saint-Étienne-du-Rouvray, France
@article{CRMECA_2018__346_9_844_0,
     author = {Abderrahmane Nebbache},
     title = {Separated nozzle flow},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {844--854},
     publisher = {Elsevier},
     volume = {346},
     number = {9},
     year = {2018},
     doi = {10.1016/j.crme.2018.06.009},
     language = {en},
}
TY  - JOUR
AU  - Abderrahmane Nebbache
TI  - Separated nozzle flow
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 844
EP  - 854
VL  - 346
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2018.06.009
LA  - en
ID  - CRMECA_2018__346_9_844_0
ER  - 
%0 Journal Article
%A Abderrahmane Nebbache
%T Separated nozzle flow
%J Comptes Rendus. Mécanique
%D 2018
%P 844-854
%V 346
%N 9
%I Elsevier
%R 10.1016/j.crme.2018.06.009
%G en
%F CRMECA_2018__346_9_844_0
Abderrahmane Nebbache. Separated nozzle flow. Comptes Rendus. Mécanique, Volume 346 (2018) no. 9, pp. 844-854. doi : 10.1016/j.crme.2018.06.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.06.009/

[1] S. Girard Étude des charges latérales dans une tuyère supersonique surdétendue, University of Poitiers, France, 1999 (Ph.D. thesis)

[2] C. Pilinski; A. Nebbache Flow separation in a truncated ideal contour nozzle, J. Turbul., Volume 5 (2004)

[3] A. Nebbache; C. Pilinski Pulsatory phenomenon in a thrust optimized contour nozzle, Aerosp. Sci. Technol., Volume 10 (2006), pp. 295-308

[4] R.W. MacCormack Current Status of Numerical Solutions of the Navier–Stokes Equations, 1985 (AIAA paper 85-0032)

[5] F.R. Menter Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., Volume 32 (1994) no. 8, pp. 1598-1605

[6] A. Gross; C. Weiland Investigation of Shock Patterns and Separation Behavior of Several Subscale Nozzles, 2000 (AIAA paper 2000-3293)

[7] R.H. Stark; B.H. Wagner Experimental Flow Investigation of a Truncated Ideal Contour Nozzle, 2006 (AIAA paper 2006-5208)

[8] C.L. Chen; S.R. Chakravarthy; C.M. Hung Numerical investigation of separated nozzle flows, AIAA J., Volume 32 (1994) no. 9, pp. 1836-1843

[9] M. Frey; G. Hagemann Status of Flow Separation Prediction in Rocket Nozzles, 1998 (AIAA Paper 98-3619)

[10] L.H. Nave; G.A. Coffey Sea Levels Side Loads in High-Area-Ratio Rocket Engines, 1973 (AIAA Paper 73-1284)

[11] N.A. Thi; H. Deniau; S. Girard; T. Alziary de Roquefort Unsteadiness of flow separation and end-effects regime in a thrust-optimized contour rocket nozzle, Flow Turbul. Combust., Volume 71 (2003), pp. 161-181

[12] M. Onofri; F. Nasuti The Physical Origins of Side-Loads in Rocket Nozzles, 1999 (AIAA Paper 99-2587)

[13] P. Reijasse; F. Bouvier; P. Servel Experimental and numerical investigation of the Cap–Shock structure in overexpanded thrust-optimized nozzles, Barcelona, Spain (2002)

[14] P. Reijasse, M. Frey, O. Haidn, Flow physics and side loads in highly over-expanded rocket nozzles, in: ODAS 2000, 2nd ONERA-DLR Aerospace Symposium, Berlin, Germany, 15–16 June 2000.

[15] C. Hirsch Numerical Computation of Internal and External Flows, John Wiley & Sons, 1988

[16] I. Shih Chang One-and-Two-Phase Nozzle Flows, The Aerospace Corporation, El Segundo, CA, USA, 1980 (Report number SD-TR-80-26)

[17] R.W. MacCormack The Effect of Viscosity in Hypervelocity Impact Cratering, May 1969 (AIAA Paper 69-354)

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

A century of wind tunnels since Eiffel

Bruno Chanetz

C. R. Méca (2017)


Comparison of numerical methods and combustion models for LES of a ramjet

A. Roux; S. Reichstadt; N. Bertier; ...

C. R. Méca (2009)


Numerical and analytical investigation of the indirect combustion noise in a nozzle

M. Leyko; F. Nicoud; S. Moreau; ...

C. R. Méca (2009)