Comptes Rendus
Computational methods in welding and additive manufacturing/Simulation numérique des procédés de soudage et de fabrication additive
Process of selective laser sintering of polymer powders: Modeling, simulation, and validation
Comptes Rendus. Mécanique, Volume 346 (2018) no. 11, pp. 1087-1103.

Selective laser sintering (SLS) of polymer powders involves multiphysical transient phenomena. A numerical tool for simulating such a process is developed on the basis of the reliable modeling of the corresponding thermo-physical transient phenomena and appropriate numerical methods. The present paper addresses modeling, simulation, and validation aspects that are indispensable for studying and optimizing SLS process. The coupled multiphysical models are detailed, and the numerical tool based on the finite volume method is presented, with validations in terms of numerical and physical accuracy, by considering the shrinkage involved in the process and the successive layers deposition. A parametric analysis is finally proposed in order to test the reliability of the model in terms of representing real physical phenomena and thermal history experienced by the material during the process.

Published online:
DOI: 10.1016/j.crme.2018.08.002
Keywords: Additive manufacturing, Laser sintering, Polymer, Heat transfers, Multiphysics modeling, Numerical simulation

Aoulaiche Mokrane 1; M'hamed Boutaous 1; Shihe Xin 1

1 Université de Lyon, CNRS, INSA Lyon, Université Claude-Bernard Lyon-1, CETHIL UMR 5008, 69621, Villeurbanne cedex, France
     author = {Aoulaiche Mokrane and M'hamed Boutaous and Shihe Xin},
     title = {Process of selective laser sintering of polymer powders: {Modeling,} simulation, and validation},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1087--1103},
     publisher = {Elsevier},
     volume = {346},
     number = {11},
     year = {2018},
     doi = {10.1016/j.crme.2018.08.002},
     language = {en},
AU  - Aoulaiche Mokrane
AU  - M'hamed Boutaous
AU  - Shihe Xin
TI  - Process of selective laser sintering of polymer powders: Modeling, simulation, and validation
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1087
EP  - 1103
VL  - 346
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2018.08.002
LA  - en
ID  - CRMECA_2018__346_11_1087_0
ER  - 
%0 Journal Article
%A Aoulaiche Mokrane
%A M'hamed Boutaous
%A Shihe Xin
%T Process of selective laser sintering of polymer powders: Modeling, simulation, and validation
%J Comptes Rendus. Mécanique
%D 2018
%P 1087-1103
%V 346
%N 11
%I Elsevier
%R 10.1016/j.crme.2018.08.002
%G en
%F CRMECA_2018__346_11_1087_0
Aoulaiche Mokrane; M'hamed Boutaous; Shihe Xin. Process of selective laser sintering of polymer powders: Modeling, simulation, and validation. Comptes Rendus. Mécanique, Volume 346 (2018) no. 11, pp. 1087-1103. doi : 10.1016/j.crme.2018.08.002.

[1] S. Dupin Étude fondamentale de la transformation du polyamide 12 par frittage laser : mécanismes physico-chimiques et relations microstructures/propriétés, INSA de Lyon, 2012 (Ph.D. thesis)

[2] P. Peyre; Y. Rouchausse; D. Defauchy; G. Régnier Experimental and numerical analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-crystalline polymers, J. Mater. Process. Technol., Volume 225 (2015), pp. 326-336

[3] M.F. Modest Radiative Heat Transfer, Academic Press, 2013

[4] L. Dong; A. Makradi; S. Ahzi; Y. Remond Three-dimensional transient finite element analysis of the selective laser sintering process, J. Mater. Process. Technol., Volume 209 (2009) no. 2, pp. 700-706

[5] D. Defauchy Simulation du procédé de fabrication directe de pièces thermoplastiques par fusion laser de poudre, École nationale supérieure d'arts et métiers – ENSAM, Paris, 2013 (Ph.D. thesis)

[6] A. Gusarov; I. Smurov Radiation transfer in metallic powder beds used in laser processing, J. Quant. Spectrosc. Radiat. Transf., Volume 111 (2010) no. 17–18, pp. 2517-2527

[7] L. Xin; M. Boutaous; S. Xin; D.A. Siginer Numerical modeling of the heating phase of the selective laser sintering process, Int. J. Therm. Sci., Volume 120 (2017), pp. 50-62

[8] L. Xin; M. Boutaous; S. Xin; D.A. Siginer Multiphysical modeling of the heating phase in the polymer powder bed fusion process, Add. Manuf., Volume 18 (2017), pp. 121-135

[9] O. Pokluda; C.T. Bellehumeur; J. Vlachopoulos Modification of Frenkel's model for sintering, AIChE J., Volume 43 (1997) no. 12, pp. 3253-3256

[10] M. Kontopoulou; J. Vlachopoulos Melting and densification of thermoplastic powders, Polym. Eng. Sci., Volume 41 (2001) no. 2, pp. 155-169

[11] M. Kontopoulou; J. Vlachopoulos Bubble dissolution in molten polymers and its role in rotational molding, Polym. Eng. Sci., Volume 39 (1999) no. 7, pp. 1189-1198

[12] G. Gogos Bubble removal in rotational molding, Polym. Eng. Sci., Volume 44 (2004) no. 2, pp. 388-394

[13] V. Voller; C. Swaminathan Eral source-based method for solidification phase change, Numer. Heat Transf., Part B, Fundam., Volume 19 (1991) no. 2, pp. 175-189

[14] J.-P. Kruth; G. Levy; F. Klocke; T. Childs Consolidation phenomena in laser and powder-bed based layered manufacturing, CIRP Ann., Volume 56 (2007) no. 2, pp. 730-759

[15] N. Brahmia Contribution à la modélisation de la cristallisation des polymères sous cisaillement: application à l'injection des polymères semi-cristallins, INSA de Lyon, France, 2007 (Ph.D. thesis)

[16] M. Boutaous; N. Brahmia; P. Bourgin Parametric study of the crystallization kinetics of a semi-crystalline polymer during cooling, C. R. Mecanique, Volume 338 (2010) no. 2, pp. 78-84

[17] E. Piorkowska; A. Galeski; J.-M. Haudin Critical assessment of overall crystallization kinetics theories and predictions, Prog. Polym. Sci., Volume 31 (2006) no. 6, pp. 549-575

[18] E. Koscher; R. Fulchiron Influence of shear on polypropylene crystallization: morphology development and kinetics, Polymer, Volume 43 (2002) no. 25, pp. 6931-6942

[19] I. Coccorullo; R. Pantani; G. Titomanlio Crystallization kinetics and solidified structure in iPP under high cooling rates, Polymer, Volume 44 (2003) no. 1, pp. 307-318

[20] J.C. Nelson; S. Xue; J.W. Barlow; J.J. Beaman; H.L. Marcus; D.L. Bourell Model of the selective laser sintering of bisphenol-A polycarbonate, Ind. Eng. Chem. Res., Volume 32 (1993) no. 10, pp. 2305-2317

[21] G. Bugeda Miguel Cervera; G. Lombera Numerical prediction of temperature and density distributions in selective laser sintering processes, Rapid Prototyping J., Volume 5 (1999) no. 1, pp. 21-26

[22] D. Riedlbauer; M. Drexler; D. Drummer; P. Steinmann; J. Mergheim Modelling, simulation and experimental validation of heat transfer in selective laser melting of the polymeric material PA12, Comput. Mater. Sci., Volume 93 (2014), pp. 239-248

[23] A. Amado; M. Schmid; K. Wegener Simulation of Warpage Induced by Non-Isothermal Crystallization of Co-Polypropylene During the SLS Process, AIP Conference Proceedings, vol. 1664, 2015

[24] A. Franco; L. Romoli Characterization of laser energy consumption in sintering of polymer based powders, J. Mater. Process. Technol., Volume 212 (2012) no. 4, pp. 917-926

[25] E. Tsotsas; H. Martin Thermal conductivity of packed beds: a review, Chem. Eng. Process. Process Intensif., Volume 22 (1987) no. 1, pp. 19-37

[26] Z. Hashin; S. Shtrikman J. Appl. Phys., 33 (1962) no. 10, pp. 3125-3131

[27] R. Le Goff; G. Poutot; D. Delaunay; R. Fulchiron; E. Koscher Study and modeling of heat transfer during the solidification of semi-crystalline polymers, Int. J. Heat Mass Transf., Volume 48 (2005) no. 25, pp. 5417-5430

[28] K. Nayak; S. Saha; K. Srinivasan; P. Dutta A numerical model for heat sinks with phase change materials and thermal conductivity enhancers, Int. J. Heat Mass Transf., Volume 49 (2006) no. 11, pp. 1833-1844

[29] A. Laouadi; M. Lacroix; N. Galanis A numerical method for the treatment of discontinuous thermal conductivity in phase change problems, Int. J. Numer. Methods Heat Fluid Flow, Volume 8 (1998) no. 3, pp. 265-287

[30] C.T. Bellehumeur; M. Kontopoulou; J. Vlachopoulos The role of viscoelasticity in polymer sintering, Rheol. Acta, Volume 37 (1998) no. 3, pp. 270-278

[31] G.W. Scherer Viscous sintering of a bimodal pore-size distribution, J. Am. Ceram. Soc., Volume 67 (1984) no. 11, pp. 709-715

[32] J.C. Chai; H.S. Lee; S.V. Patankar Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation heat transfer procedure, Numer. Heat Transf., Volume 26 (1994) no. 2, pp. 225-235

[33] L. Verbelen; S. Dadbakhsh; M. Van den Eynde; J.-P. Kruth; B. Goderis; P. Van Puyvelde Characterization of polyamide powders for determination of laser sintering processability, Eur. Polym. J., Volume 75 (2016), pp. 163-174

Cited by Sources:

Comments - Policy