Comptes Rendus
Computational methods in welding and additive manufacturing/Simulation numérique des procédés de soudage et de fabrication additive
Numerical modelling of fluid and solid thermomechanics in additive manufacturing by powder-bed fusion: Continuum and level set formulation applied to track- and part-scale simulations
Comptes Rendus. Mécanique, Computational methods in welding and additive manufacturing Simulation numérique des procédés de soudage et fabrication additive, Volume 346 (2018) no. 11, pp. 1055-1071.

The thermomechanical analysis of powder-bed fusion using a laser beam is simulated in both meso- and macroscales within a framework combining continuum assumption and level-set formulation. The mesoscale simulation focuses on laser interaction with the powder bed, and on subsequent melting and solidification. Modelling is conducted at the scale of material deposition, in which powder-bed fusion, hydrodynamics in the melt pool, and thermal stress are simulated. The macroscale model focuses on part construction and post-deposition. During construction, by contrast with the mesoscale approach, the fluid flow in the fusion zone is ignored and material addition is simplified by modelling it at the scale of entire layers, or fractions of layers. The modelling of the energy input is adapted accordingly. This thermomechanical model addresses heat exchange, residual stress, and distortion at the part's scale. In both approaches, adaptive remeshing is applied, providing a good compromise between the needs to provide accurate prediction and maintaining sustainable computation times.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.08.008
Mots-clés : Additive manufacturing, Powder-bed fusion, Finite element modelling, Level set formulation, Continuum assumption, Thermomechanics, Track and part scales

Yancheng Zhang 1 ; Qiang Chen 1 ; Gildas Guillemot 1 ; Charles-André Gandin 1 ; Michel Bellet 1

1 MINES ParisTech, PSL Research University, Centre de mise en forme des matériaux (CEMEF), CNRS UMR 7635, CS 10207, 06904 Sophia Antipolis cedex, France
@article{CRMECA_2018__346_11_1055_0,
     author = {Yancheng Zhang and Qiang Chen and Gildas Guillemot and Charles-Andr\'e Gandin and Michel Bellet},
     title = {Numerical modelling of fluid and solid thermomechanics in additive manufacturing by powder-bed fusion: {Continuum} and level set formulation applied to track- and part-scale simulations},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1055--1071},
     publisher = {Elsevier},
     volume = {346},
     number = {11},
     year = {2018},
     doi = {10.1016/j.crme.2018.08.008},
     language = {en},
}
TY  - JOUR
AU  - Yancheng Zhang
AU  - Qiang Chen
AU  - Gildas Guillemot
AU  - Charles-André Gandin
AU  - Michel Bellet
TI  - Numerical modelling of fluid and solid thermomechanics in additive manufacturing by powder-bed fusion: Continuum and level set formulation applied to track- and part-scale simulations
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1055
EP  - 1071
VL  - 346
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2018.08.008
LA  - en
ID  - CRMECA_2018__346_11_1055_0
ER  - 
%0 Journal Article
%A Yancheng Zhang
%A Qiang Chen
%A Gildas Guillemot
%A Charles-André Gandin
%A Michel Bellet
%T Numerical modelling of fluid and solid thermomechanics in additive manufacturing by powder-bed fusion: Continuum and level set formulation applied to track- and part-scale simulations
%J Comptes Rendus. Mécanique
%D 2018
%P 1055-1071
%V 346
%N 11
%I Elsevier
%R 10.1016/j.crme.2018.08.008
%G en
%F CRMECA_2018__346_11_1055_0
Yancheng Zhang; Qiang Chen; Gildas Guillemot; Charles-André Gandin; Michel Bellet. Numerical modelling of fluid and solid thermomechanics in additive manufacturing by powder-bed fusion: Continuum and level set formulation applied to track- and part-scale simulations. Comptes Rendus. Mécanique, Computational methods in welding and additive manufacturing
Simulation numérique des procédés de soudage et fabrication additive, Volume 346 (2018) no. 11, pp. 1055-1071. doi : 10.1016/j.crme.2018.08.008. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.08.008/

[1] B. Zhang; Y. Li; Q. Bai Defect formation mechanisms in selective laser melting: a review, Chin. J. Mech. Eng., Volume 30 (2017), pp. 515-527

[2] C.Y. Yap; C.K. Chua; Z.L. Dong; Z.H. Liu; D.Q. Zhang; L.E. Loh; S.L. Sing Review of selective laser melting: materials and applications, Appl. Phys. Rev., Volume 2 (2015)

[3] C. Körner; E. Attar; P. Heinl Mesoscopic simulation of selective beam melting processes, J. Mater. Process. Technol., Volume 211 (2011), pp. 978-987

[4] A. Rausch; V. Küng; C. Pobel; M. Markl; C. Körner Predictive simulation of process windows for powder-bed fusion additive manufacturing: influence of the powder bulk density, Materials, Volume 10 (2017), p. 1117

[5] W. King; A.T. Anderson; R.M. Ferencz; N.E. Hodge; C. Kamath; S.A. Khairallah Overview of modelling and simulation of metal powder-bed fusion process at Lawrence Livermore National Laboratory, Mater. Sci. Technol., Volume 31 (2015), pp. 957-968

[6] C. Qiu; C. Panwisawas; M. Ward; H.C. Basoalto; J.W. Brooks; M.M. Attallah On the role of melt flow into the surface structure and porosity development during selective laser melting, Acta Mater., Volume 96 (2015), pp. 72-79

[7] M. Megahed; H.W. Mindt; N. N'Dri; H. Duan; O. Desmaison Metal additive-manufacturing process and residual stress modeling, IMMI, Volume 5 (2016) no. 4, pp. 1-33

[8] H.W. Mindt; M. Megahed; N.P. Lavery; M.A. Holmes; S.G.R. Brown Powder bed layer characteristics: the overseen first-order process input, Metall. Mater. Trans. A, Volume 47 (2016), pp. 3811-3822

[9] S. Ly; A. Rubenchik; S. Khairallah; G. Guss; M. Matthews Metal vapor microjet controls material redistribution in laser powder-bed fusion additive manufacturing, Sci. Rep., Volume 7 (2017), p. 4085

[10] D. Gu; B. He Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti–Ni shape memory alloy, Comput. Mater. Sci., Volume 117 (2016), pp. 221-232

[11] N.E. Hodge; R.M. Ferencz; J.M. Solberg Implementation of a thermomechanical model for the simulation of selective laser melting, Comput. Mech., Volume 54 (2014), pp. 33-51

[12] M.F. Zaeh; G. Branner Investigations on residual stresses and deformations in selective laser melting, Prod. Eng. Res. Dev., Volume 4 (2010), pp. 35-45

[13] P. Alvarez; J. Ecenarro; I. Setien; M.S. Sebastian; A. Echeverria; L. Eciolaza Computationally efficient distortion prediction in powder-bed fusion additive manufacturing, Int. J. Sci. Eng. Res., Volume 2 (2016), pp. 39-46

[14] B. Li; C.H. Fu; Y.B. Guo; F.Z. Fang A multiscale modeling approach for fast prediction of part distortion in selective laser melting, J. Mater. Process. Technol., Volume 229 (2016), pp. 703-712

[15] Q. Chen; G. Guillemot; C.-A. Gandin; M. Bellet Three-dimensional finite element thermomechanical modeling of additive manufacturing by selective laser melting for ceramic materials, Addit. Manuf., Volume 16 (2017), pp. 124-137

[16] Y. Zhang; G. Guillemot; M. Bernacki; M. Bellet Macroscopic thermal finite element modelling of additive metal manufacturing by selective laser melting process, Comput. Methods Appl. Mech. Eng., Volume 331 (2018), pp. 514-535

[17] S. Osher; J.A. Sethian Fronts propagating with curvature dependent speed: algorithms based on Hamilton–Jacobi formulations, J. Comput. Phys., Volume 79 (1988), pp. 12-49

[18] M. Shakoor Three-Dimensional Numerical Modeling of Ductile Fracture Mechanisms at the Microscale, Mines ParisTech, France, 2016 (PhD Thesis)

[19] A. Saad; C.-A. Gandin; M. Bellet Temperature-based energy solver coupled with tabulated thermodynamic properties – application to the prediction of macrosegregation in multicomponent alloys, Comput. Mater. Sci., Volume 99 (2015), pp. 221-231

[20] Y. Zhang; A. Combescure; A. Gravouil Efficient hyper-reduced-order model (HROM) for thermal analysis in the moving frame, Int. J. Numer. Methods Eng., Volume 111 (2017), pp. 176-200

[21] E. Hachem; B. Rivaux; T. Kloczko; H. Digonnet; T. Coupez Stabilized finite element method for incompressible flows with high Reynolds number, J. Comput. Phys., Volume 229 (2010), pp. 8643-8665

[22] M. Bellet; V.D. Fachinotti ALE method for solidification modelling, Comput. Methods Appl. Mech. Eng., Volume 193 (2004), pp. 4355-4381

[23] M. Bellet; O. Jaouen; I. Poitrault An ALE-FEM approach to the thermomechanics of solidification processes with application to the prediction of pipe shrinkage, Int. J. Numer. Methods H., Volume 15 (2005), pp. 120-142

[24] L. Moniz; C. Colin; J.-D. Bartout; K. Terki; M.-H. Berger Laser beam melting of alumina: effect of absorber additions, JOM, Volume 70 (2018), pp. 328-335

[25] Q. Chen Thermomechanical Numerical Modeling of Additive Manufacturing by Selective Laser Melting of Powder Bed – Application to Ceramic Material, PSL Research University – Mines ParisTech, France, 2018 (PhD thesis)

[26] I.A. Aksay; J.A. Pask; R.F. Davis Density of SiO2Al2O3 melts, J. Amer. Ceram. Soc., Volume 62 (1979), pp. 332-336

[27] E. Sanchez-Gonzalez; J.J. Melendez-Martinez; A. Pajares; P. Miranda; F. Guiberteau; B.R. Lawn Application of Hertzian tests to measure stress–strain characteristics of ceramics at elevated temperatures, J. Amer. Ceram. Soc., Volume 90 (2007), pp. 149-153

[28] P.F. Paradis; T. Ishikawa Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques, Jpn. Soc. Appl. Phys., Volume 44 (2005), pp. 5082-5085

[29] M. Bellet; O. Boughanmi; G. Fidel A partitioned resolution for concurrent fluid flow and stress analysis during solidification: application to ingot casting, Schladming (Austria), 17–22 June 2012 (IOP Conf. Ser.), Volume vol. 33 (2012)

[30] W. Tan; Y.C. Shin Multi-scale modeling of solidification and microstructure development in laser keyhole welding process for austenitic stainless steel, Comput. Mater. Sci., Volume 98 (2015), pp. 446-458

[31] S. Chen; G. Guillemot; C.-A. Gandin Three-dimensional cellular automaton-finite element modeling of solidification grain structures for arc-welding processes, Acta Mater., Volume 115 (2016), pp. 448-467

  • Eric Feulvarch; Alain Rassineux; Jean-Christophe Roux; Alexey Sova; Cédric Pouvreau; François Josse A membrane finite element for fast simulation of overlapping beads geometry during direct energy deposition additive manufacturing, Computational Mechanics, Volume 75 (2025) no. 2, p. 679 | DOI:10.1007/s00466-024-02525-w
  • Yancheng Zhang; Hugo Behlal; Charles-André Gandin; Oriane Senninger; Gildas Guillemot; Michel Bellet Homogenization methods for thermal study of support structure in laser powder bed fusion (L-PBF) – application to process numerical modeling, International Journal of Numerical Methods for Heat Fluid Flow, Volume 35 (2025) no. 1, p. 358 | DOI:10.1108/hff-09-2024-0683
  • L. de Peindray d’Ambelle; M. A. Sánchez Pérez; K. Moussaoui; F. Lachaud; C. Mabru; R. Chieragatti Part-scale numerical simulation for laser-powder directed energy deposition: experimental calibration, International Journal on Interactive Design and Manufacturing (IJIDeM) (2025) | DOI:10.1007/s12008-025-02242-5
  • Emmanuel De Leon; Alex Riensche; Benjamin D. Bevans; Christopher Billings; Zahed Siddique; Yingtao Liu A Review of Modeling, Simulation, and Process Qualification of Additively Manufactured Metal Components via the Laser Powder Bed Fusion Method, Journal of Manufacturing and Materials Processing, Volume 9 (2025) no. 1, p. 22 | DOI:10.3390/jmmp9010022
  • Songzhe Xu; Ling Shi; Chaoyue Chen; Jiang Wang; Zhongming Ren Additive Manufacturing Simulation, Metal Additive Manufacturing (2025), p. 255 | DOI:10.1002/9781394287659.ch11
  • A. Queva; G. Guillemot; C. Moriconi; R. Bergeron; M. Bellet Mesoscale multilayer multitrack modeling of melt pool physics in laser powder bed fusion of lattice metal features, Additive Manufacturing, Volume 93 (2024), p. 104365 | DOI:10.1016/j.addma.2024.104365
  • Yabo Jia; Loïc Jegou; Eric Feulvarch; Yassine Saadlaoui; Valérie Kaftandjian; Thomas Elguedj; Laurent Dubar; Jean-Michel Bergheau An improved Arbitrary Lagrangian–Eulerian thermal-fluid model by considering powder deposition effects on melting pool during Direct Energy Deposition processes, Additive Manufacturing, Volume 96 (2024), p. 104570 | DOI:10.1016/j.addma.2024.104570
  • Yabo Jia; Yassine Saadlaoui; Eric Feulvarch; Jean-Michel Bergheau An efficient local moving thermal-fluid framework for accelerating heat and mass transfer simulation during welding and additive manufacturing processes, Computer Methods in Applied Mechanics and Engineering, Volume 419 (2024), p. 116673 | DOI:10.1016/j.cma.2023.116673
  • Michel Bellet; Joël Keumo Tematio; Yancheng Zhang The inherent strain method for simulation of additive manufacturing–A critical assessment based on a new variant of the method, International Journal for Numerical Methods in Engineering, Volume 125 (2024) no. 2 | DOI:10.1002/nme.7378
  • Xuan Yang; Biao Li; Yazhi Li; Baishun Yang; Kun Zhou A finite volume–based thermo-fluid-mechanical model of the LPBF process, International Journal of Mechanical Sciences, Volume 284 (2024), p. 109759 | DOI:10.1016/j.ijmecsci.2024.109759
  • Yancheng Zhang; Gildas Guillemot; Théophile Camus; Oriane Senninger; Michel Bellet; Charles-André Gandin Part-Scale Thermomechanical and Grain Structure Modeling for Additive Manufacturing: Status and Perspectives, Metals, Volume 14 (2024) no. 10, p. 1173 | DOI:10.3390/met14101173
  • Constantin Zenz; Carlos Durán; Tobias Florian; Robert Bielak; Andreas Otto Multiphysical simulation of hot cracking in Laser-Based Powder Bed Fusion, Procedia CIRP, Volume 124 (2024), p. 341 | DOI:10.1016/j.procir.2024.08.130
  • Yupiter H. P. Manurung; Thoufeili Taufek; Mohd Shahriman Adenan; Nur Izan Syahriah Hussein; Muhd Mufqi Aminallah; Fitri Iskandar Jamaludin; Loucas Papadakis; Haifa Sallem Optimizing novel multi-scaled simulation method for deviation analysis of generatively designed aileron bracket using laser powder bed fusion, The International Journal of Advanced Manufacturing Technology, Volume 132 (2024) no. 11-12, p. 5855 | DOI:10.1007/s00170-024-13714-5
  • Thoufeili Taufek; Yupiter H.P. Manurung; Mohd Shahriman Adenan; Syidatul Akma; Hui Leng Choo; Borhen Louhichi; Martin Bednardz; Izhar Aziz Modeling and Simulation of Additively Manufactured Cylindrical Component Using Combined Thermomechanical and Inherent Strain Method with Nelder–Mead Optimization, 3D Printing and Additive Manufacturing, Volume 10 (2023) no. 1, p. 156 | DOI:10.1089/3dp.2021.0197
  • Wenyou Zhang; Mingming Tong; Noel M. Harrison Multipart Build Effects on Temperature and Residual Stress by Laser Beam Powder Bed Fusion Additive Manufacturing, 3D Printing and Additive Manufacturing, Volume 10 (2023) no. 4, p. 749 | DOI:10.1089/3dp.2021.0143
  • Yang Liu; Jing Shi; Yachao Wang Evolution, Control, and Mitigation of Residual Stresses in Additively Manufactured Metallic Materials: A Review, Advanced Engineering Materials, Volume 25 (2023) no. 22 | DOI:10.1002/adem.202300489
  • Reza Molaei; Ali Fatemi; Seyed M.J. Razavi; Filippo Berto Fatigue and Fracture of Additively Manufactured Metallic Materials, Comprehensive Structural Integrity (2023), p. 186 | DOI:10.1016/b978-0-12-822944-6.00010-4
  • J Keumo Tematio; L Ravix; Y Zhang; M Bellet Thermo-mechanical modelling of additive manufacturing: activation of non-constructed domain and effect of kinematic hardening, IOP Conference Series: Materials Science and Engineering, Volume 1281 (2023) no. 1, p. 012005 | DOI:10.1088/1757-899x/1281/1/012005
  • Michel Bellet; Joël Keumo Tematio; Yancheng Zhang The inherent strain rate method for thermo‐mechanical simulation of directed energy deposition additive manufacturing, International Journal for Numerical Methods in Engineering, Volume 124 (2023) no. 18, p. 4058 | DOI:10.1002/nme.7293
  • Alexandre Caboussat; Julien Hess; Alexandre Masserey; Marco Picasso Numerical simulation of temperature-driven free surface flows, with application to laser melting and polishing, Journal of Computational Physics: X, Volume 17 (2023), p. 100127 | DOI:10.1016/j.jcpx.2023.100127
  • Jesse Beisegel; Johannes Buhl; Rameez Israr; Johannes Schmidt; Markus Bambach; Armin Fügenschuh Mixed-Integer Programming Models for Two Metal Additive Manufacturing Methods, Mathematical Methods for Objects Reconstruction, Volume 54 (2023), p. 121 | DOI:10.1007/978-981-99-0776-2_5
  • Jyotirmoy Nandy; Seshadev Sahoo; Hrushikesh Sarangi Dislocation Analysis of Laser-Sintered Al Alloy Nanoparticles in Using Molecular Dynamics Simulation, Recent Advances in Mechanical Engineering (2023), p. 291 | DOI:10.1007/978-981-16-9057-0_31
  • Liming Yao; Zhongmin Xiao; Sheng Huang; Upadrasta Ramamurty The formation mechanism of metal-ceramic interlayer interface during laser powder bed fusion, Virtual and Physical Prototyping, Volume 18 (2023) no. 1 | DOI:10.1080/17452759.2023.2235324
  • Zhimin Xi Model Predictive Control of Melt Pool Size for the Laser Powder Bed Fusion Process Under Process Uncertainty, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, Volume 8 (2022) no. 1 | DOI:10.1115/1.4051746
  • Muriel Carin Numerical Simulation of Additive Manufacturing Processes, Additive Manufacturing of Metal Alloys 1 (2022), p. 201 | DOI:10.1002/9781394163380.ch4
  • Yabo Jia; Yassine Saadlaoui; Jean-Christophe Roux; Jean-Michel Bergheau Steady-state thermal model based on new dedicated boundary conditions – application in the simulation of laser powder bed fusion process, Applied Mathematical Modelling, Volume 112 (2022), p. 749 | DOI:10.1016/j.apm.2022.08.013
  • Emmanouil L. Papazoglou; Nikolaos E. Karkalos; Panagiotis Karmiris-Obratański; Angelos P. Markopoulos On the Modeling and Simulation of SLM and SLS for Metal and Polymer Powders: A Review, Archives of Computational Methods in Engineering, Volume 29 (2022) no. 2, p. 941 | DOI:10.1007/s11831-021-09601-x
  • S.M. Elahi; R. Tavakoli; A.K. Boukellal; T. Isensee; I. Romero; D. Tourret Multiscale simulation of powder-bed fusion processing of metallic alloys, Computational Materials Science, Volume 209 (2022), p. 111383 | DOI:10.1016/j.commatsci.2022.111383
  • Yancheng Zhang; Charles-André Gandin; Michel Bellet Finite Element Modeling of Powder Bed Fusion at Part Scale by a Super-Layer Deposition Method Based on Level Set and Mesh Adaptation, Journal of Manufacturing Science and Engineering, Volume 144 (2022) no. 5 | DOI:10.1115/1.4052386
  • Alberto Molinari; Simone Ancellotti; Vigilio Fontanari; Erica Iacob; Valerio Luchin; Gianluca Zappini; Matteo Benedetti Effect of Process Parameters on the Surface Microgeometry of a Ti6Al4V Alloy Manufactured by Laser Powder Bed Fusion: 3D vs. 2D Characterization, Metals, Volume 12 (2022) no. 1, p. 106 | DOI:10.3390/met12010106
  • Yupiter HP Manurung; Thoufeili Taufek; Mohd Shahriman Bin Adenan; Muhd Mufqi Aminallah; Fitri Iskandar Jamaludin; Loucas Papadakis; Haifa Sallem Investigation on Distortion Behaviour of Aileron Bracket Additively Manufactured Using Laser Powder Bed Fusion with Generative Design and Optimized Multi-Scaled Simulation Method, SSRN Electronic Journal (2022) | DOI:10.2139/ssrn.4199804
  • Feng Gao; Bruno Macquaire; Yancheng Zhang; Michel Bellet A new localized inverse identification method for high temperature testing under resistive heating: Application to the elastic‐viscoplastic behaviour of L‐PBF processed In718, Strain, Volume 58 (2022) no. 3 | DOI:10.1111/str.12409
  • Xinju Zhang; Zhenlu Tian; Guang Yang; Hao Zhang; Zhanpu Xue; Haipeng Yan; Yunguang Ji Considerations for the Variable Density Lattice Structure of Additive Manufacturing: A Review, Sustainability, Volume 14 (2022) no. 18, p. 11404 | DOI:10.3390/su141811404
  • Eric Feulvarch; François Josse; Jean-Christophe Roux; Alexey Sova An efficient reduced-physics-coupling FEM formulation for simulating a molten metal deposition geometry, European Journal of Mechanics - A/Solids, Volume 89 (2021), p. 104290 | DOI:10.1016/j.euromechsol.2021.104290
  • Igor Yadroitsev; Ina Yadroitsava A step-by-step guide to the L-PBF process, Fundamentals of Laser Powder Bed Fusion of Metals (2021), p. 39 | DOI:10.1016/b978-0-12-824090-8.00026-3
  • Amir Reza Ansari Dezfoli; Yu-Lung Lo; M. Mohsin Raza Prediction of Epitaxial Grain Growth in Single-Track Laser Melting of IN718 Using Integrated Finite Element and Cellular Automaton Approach, Materials, Volume 14 (2021) no. 18, p. 5202 | DOI:10.3390/ma14185202
  • Amir Reza Ansari Dezfoli; Yu-Lung Lo; M. Mohsin Raza 3D Multi-Track and Multi-Layer Epitaxy Grain Growth Simulations of Selective Laser Melting, Materials, Volume 14 (2021) no. 23, p. 7346 | DOI:10.3390/ma14237346
  • H.L. Wei; T. Mukherjee; W. Zhang; J.S. Zuback; G.L. Knapp; A. De; T. DebRoy Mechanistic models for additive manufacturing of metallic components, Progress in Materials Science, Volume 116 (2021), p. 100703 | DOI:10.1016/j.pmatsci.2020.100703
  • Pravin Kumar; V. S. K. Chakravadhhanula; Sushant K. Manwatkar; P. Chakravarthy; S. V. S. Narayana Murty Establishing the Qualitative Relationship Between Process Parameters: Microstructure, Phases and Defects in SLM-PBF Manufactured and Heat Treated Inconel 718 Alloy, Transactions of the Indian National Academy of Engineering, Volume 6 (2021) no. 4, p. 1083 | DOI:10.1007/s41403-021-00256-5
  • S. Ancellotti; V. Fontanari; A. Molinari; E. Iacob; P. Bellutti; V. Luchin; G. Zappini; M. Benedetti Numerical/experimental strategies to infer enhanced liquid thermal conductivity and roughness in laser powder-bed fusion processes, Additive Manufacturing, Volume 27 (2019), p. 552 | DOI:10.1016/j.addma.2019.04.007
  • Gabriele Piscopo; Eleonora Atzeni; Alessandro Salmi A Hybrid Modeling of the Physics-Driven Evolution of Material Addition and Track Generation in Laser Powder Directed Energy Deposition, Materials, Volume 12 (2019) no. 17, p. 2819 | DOI:10.3390/ma12172819

Cité par 41 documents. Sources : Crossref

Commentaires - Politique