Comptes Rendus
Affected depth approach to determine the fatigue strength of materials containing surface defects
Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1199-1215.

This paper explains a novel methodology to determine the High Cycle Fatigue (HCF) reliability of materials with defects. A defect was represented by a semi-spherical void situated at a specimen surface subjected to periodic loading. Then, the Finite Element (FE) method was carried out to find out the stress distribution near the defects for diverse sizes and diverse loadings. The Crossland stress change is studied and interpolated by a mathematical function depending on fatigue limits, defect radius, and profundity from the defect tip. The HCF strength of defect material is computed by the “stress strength” approach via the Monte Carlo sampling. This approach leads to determine Kitagawa–Takahashi diagrams, for a definite reliability, of materials with defects. The calculated HCF reliabilities agree well with fatigue tests. Obtaining Kitagawa–Takahashi diagrams with reliability level permits the engineer to be engaged in an endurance problem to compute the defective fatigue lives in safe and efficient process. As a final point, we discuss the sensitivity effects of defect size, defect free fatigue limits, affected depth, and load amplitude to envisage the fatigue reliability of materials with defects.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2018.08.012
Mots clés : Reliability, Defect, Affected depth, Fatigue limit, HCF criteria

Anouar Nasr 1, 2 ; Wannes Hassine 1 ; Chokri Bouraoui 3

1 LGM, ENIM, Université de Monastir, avenue Ibn-Eljazzar, Monastir 5019, Tunisia
2 IPEIM, Université de Monastir, avenue Ibn-Eljazzar, Monastir 5019, Tunisia
3 LMS, ENISO, Université de Sousse, BP264, Erriadh, Sousse 4023, Tunisia
@article{CRMECA_2018__346_12_1199_0,
     author = {Anouar Nasr and Wannes Hassine and Chokri Bouraoui},
     title = {Affected depth approach to determine the fatigue strength of materials containing surface defects},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1199--1215},
     publisher = {Elsevier},
     volume = {346},
     number = {12},
     year = {2018},
     doi = {10.1016/j.crme.2018.08.012},
     language = {en},
}
TY  - JOUR
AU  - Anouar Nasr
AU  - Wannes Hassine
AU  - Chokri Bouraoui
TI  - Affected depth approach to determine the fatigue strength of materials containing surface defects
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1199
EP  - 1215
VL  - 346
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2018.08.012
LA  - en
ID  - CRMECA_2018__346_12_1199_0
ER  - 
%0 Journal Article
%A Anouar Nasr
%A Wannes Hassine
%A Chokri Bouraoui
%T Affected depth approach to determine the fatigue strength of materials containing surface defects
%J Comptes Rendus. Mécanique
%D 2018
%P 1199-1215
%V 346
%N 12
%I Elsevier
%R 10.1016/j.crme.2018.08.012
%G en
%F CRMECA_2018__346_12_1199_0
Anouar Nasr; Wannes Hassine; Chokri Bouraoui. Affected depth approach to determine the fatigue strength of materials containing surface defects. Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1199-1215. doi : 10.1016/j.crme.2018.08.012. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.08.012/

[1] H. Yaacub Agha; A.-S. Béranger; R. Billardon; F. Hild High cycle fatigue behaviour of spheroidal graphite cast iron, Fatigue Fract. Eng. Mater. Struct., Volume 21 (1998), pp. 287-296

[2] I. Chantier; R. Bobet; R. Billardon; F. Hild A probabilistic approach to predict the very high cycle fatigue behaviour of spheroidal graphite cast iron structures, Fatigue Fract. Eng. Mater. Struct., Volume 23 (1999), pp. 173-180

[3] A. Nasr; Ch. Bouraoui; R. Fathallah; Y. Nadot Probabilistic high cycle fatigue behaviour of nodular cast iron containing casting defects, Fatigue Fract. Eng. Mater. Struct., Volume 32 (2009), pp. 292-309

[4] W.K. Liu; Y. Chen; T. Belytschko; Y.J. Lua Three reliability methods for fatigue crack growth, Eng. Fract. Mech., Volume 53 (1996), pp. 733-752

[5] K.P. Oh A diffusion model for fatigue crack growth, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci., Volume 367 (1979), pp. 47-58

[6] E.D. Leonel; A. Chateauneuf; W.S. Venturini; P. Bressolette Coupled reliability and boundary element model for probabilistic fatigue life assessment in mixed mode crack propagation, Int. J. Fatigue, Volume 32 (2010), pp. 1823-1834

[7] M. Liao; X.F. Xu; Q.X. Yang Cumulative fatigue damage dynamic interference statistical model, Int. J. Fatigue, Volume 17 (1995), pp. 559-566

[8] Y.B. Xiang; Y.M. Liu Application of inverse first-order reliability method for probabilistic fatigue life prediction, Probab. Eng. Mech., Volume 26 (2011), pp. 148-156

[9] T. Billaudeau; Y. Nadot; G. Bezine Multiaxial fatigue limit for defective materials: mechanisms and experiments, Acta Mater., Volume 52 (2004), pp. 3911-3920

[10] A. Nasr; Y. Nadot; Ch. Bouraoui; R. Fathallah; M. Jouiad Fatigue initiation in C35 steel: influence of loading and defect, Int. J. Fatigue, Volume 32 (2010), pp. 780-787

[11] P. Mu; Y. Nadot; C. Nadot–Martin; A. Chabod; I. Serrano-Munoz; C. Verdu Influence of casting defects on the behaviour of cast aluminium AS7G06-T6, Int. J. Fatigue, Volume 63 (2014), pp. 97-109

[12] Y. Murakami Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusion, Elsevier Science Ltd, Oxford, UK, 2002

[13] B. Crossland Effect of large hydrostatic pressure on the tensional fatigue strength of fan alloy steel, Proceedings of International Conference on Fatigue of Metals, Institution of Mechanical Engineers, London, UK, 1956, pp. 138-149

[14] Y. Nadot; T. Billaudeau Multiaxial fatigue limit criterion for defective materials, Eng. Fract. Mech., Volume 73 (2006), pp. 112-133

[15] A. Nasr; W. Hassine; Ch. Bouraoui Fatigue limit assessment for defective materials based on affected depth, Metall. Res. Technol., Volume 114 (2017), p. 505

[16] M. Lemaire; A. Chateauneuf; J. Mitteau Fiabilité des structures: couplage mécano-fiabiliste statique, Hermès, Paris, 2005

[17] Y. Zhao; T. Ono Moment methods for structural reliability, Struct. Saf., Volume 23 (2001), pp. 47-75

[18] P. Bjerager On computation methods for structural reliability analysis, Struct. Saf., Volume 9 (1990), pp. 79-96

[19] H.P. Lieurade La pratique des essais de fatigue, Pyc Livres, Paris, 1982 ([in French]) (ISBN: 2-85330-053-6)

[20] J. Schijve Statistical distribution functions and fatigue of structures, Int. J. Fatigue, Volume 27 (2005), pp. 1031-1039

[21] C. Bathias; J.-P. Bailon La fatigue des matériaux et des structures, Hermès, Paris, 1997 ([in French])

[22] R. Ben Sghaier; Ch. Bouraoui; R. Fathallah; T. Hassine; A. Dogui Probabilistic high cycle fatigue behaviour prediction based on global approach criteria, Int. J. Fatigue, Volume 29 (2007), pp. 209-221

Cité par Sources :

Commentaires - Politique