Comptes Rendus
Stochastic homogenization of reinforced polymer with very small carbon inclusions
Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1192-1198.

In this study, we wish to determine a homogenized model of a material reinforced by spherical inclusion that is randomly distributed in space. The method used for the transition to the limit is Γ-convergence [1] in the stochastic case. In addition to the stochastic framework, the very small size compared to the characteristic size of the materials makes the homogenization procedure unconventional. In this study, we want to determine a homogenized model of a material reinforced by a spherical inclusion distributed randomly in space. The peculiarity here is that these particles are of very small size, this generating an energy due to the strong contrast of microstructure. The method used for the transition to the limit is Γ-convergence [1] in the stochastic case. The random distribution is taken into account during the transition of scales, so as to preserve the statistical information, and that in spite of the passage to the limit. In addition to the stochastic framework, the very small size compared to the characteristic size of the materials makes the homogenization procedure unconventional.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2018.09.002
Keywords: Asymptotic analysis, Γ-convergence, Ergodic theory

Azdine Nait-ali 1

1 Institut Pprime, UPR CNRS 3346, Département “Physique et mécanique des matériaux”, ENSMA, Téléport 2, 1, avenue Clément-Ader, BP 40109, 86961 Futuroscope Chasseneuil cedex, France
@article{CRMECA_2018__346_12_1192_0,
     author = {Azdine Nait-ali},
     title = {Stochastic homogenization of reinforced polymer with very small carbon inclusions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {1192--1198},
     publisher = {Elsevier},
     volume = {346},
     number = {12},
     year = {2018},
     doi = {10.1016/j.crme.2018.09.002},
     language = {en},
}
TY  - JOUR
AU  - Azdine Nait-ali
TI  - Stochastic homogenization of reinforced polymer with very small carbon inclusions
JO  - Comptes Rendus. Mécanique
PY  - 2018
SP  - 1192
EP  - 1198
VL  - 346
IS  - 12
PB  - Elsevier
DO  - 10.1016/j.crme.2018.09.002
LA  - en
ID  - CRMECA_2018__346_12_1192_0
ER  - 
%0 Journal Article
%A Azdine Nait-ali
%T Stochastic homogenization of reinforced polymer with very small carbon inclusions
%J Comptes Rendus. Mécanique
%D 2018
%P 1192-1198
%V 346
%N 12
%I Elsevier
%R 10.1016/j.crme.2018.09.002
%G en
%F CRMECA_2018__346_12_1192_0
Azdine Nait-ali. Stochastic homogenization of reinforced polymer with very small carbon inclusions. Comptes Rendus. Mécanique, Volume 346 (2018) no. 12, pp. 1192-1198. doi : 10.1016/j.crme.2018.09.002. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2018.09.002/

[1] G. Dal Maso An Introduction to Γ-Convergence, Birkäuser, Boston, MA, USA, 1993

[2] G. Dal Maso; L. Modica Non linear stochastic homogenization and ergodic theory, J. Reine Angew. Math., Volume 363 (1986), pp. 27-43

[3] G. Michaille; A. Nait-Ali; S. Pagano Two-dimensional deterministic model of a thin body with randomly distributed high-conductivity fibers, Appl. Math. Res. Express (2013)

[4] A. Nait-Ali Volumic method for the variational sum of a 2D discrete model, C. R. Mecanique, Volume 342 ( December 2014 ) no. 12, pp. 726-731

[5] M. Bellieud; G. Bouchitté Homogenization of elliptic problems in a fiber reinforced structure. Nonlocal effect, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 26 (1998) no. 3, pp. 407-436

[6] A. Nait-Ali Nonlocal modeling of a randomly distributed and aligned long-fiber composite material, C. R. Mecanique, Volume 345 (2017), pp. 192-207

[7] C. Licht; G. Michaille Global–local subadditive ergodic theorems and application to homogenization in elasticity, Ann. Math. Blaise Pascal, Volume 9 (2002), pp. 21-62

[8] C. Licht; G. Michaille A nonlocal energy functional in pseudo-plasticity, Asymptot. Anal., Volume 45 (2005), pp. 313-339

[9] H. Amor; J. Marigo; C. Maurini Regularized formulation of the variational brittle fracture with unilateral contact: numerical experiments, J. Mech. Phys. Solids, Volume 57 (2009), pp. 1209-1229

[10] E. Lorentz; S. Andrieux Analysis of non-local models through energetic formulations, J. Solids Struct., Volume 40 (2003), pp. 2905-2936

[11] N. Germain; J. Besson; F. Feyel Composite layered materials: anisotropic nonlocal damage models, Comput. Methods Appl. Mech. Eng., Volume 196 (2007) no. 41–44, pp. 4272-4282

[12] B. Bourdin; G.A. Francfort; J-J. Marigo Numerical experiments in revisited brittle fracture, J. Mech. Phys. Solids, Volume 48 (2000) no. 4, pp. 797-826

[13] K. Pham; J.-J. Marigo The variational approach to damage: II. The gradient damage models, C. R. Mecanique, Volume 338 (2010), pp. 199-206

[14] K. Pham; H. Amor; J.-J. Marigo; C. Maurini Gradient damage models and their use to approximate brittle fracture, Int. J. Damage Mech., Volume 20 (2011) no. 4, pp. 618-652

[15] H. Attouch; G. Buttazzo; G. Michaille Variational Analysis in Sobolev and BV Space: Application to PDEs and Optimization, MPS-SIAM Book Series on Optimization, vol. 6, December 2005

[16] A. Nait-Ali; O. Kane-diallo; S. Castagnet Catching the time evolution of microstructure morphology from dynamic covariograms, C. R. Mecanique, Volume 343 (2015), pp. 301-306

[17] G. Michaille; A. Nait-Ali; S. Pagano Macroscopic behavior of a randomly fibered medium, J. Pure Appl. Math., Volume 96 (2011) no. 3, pp. 230-252

[18] L. Xia; J. Yvonnet; S. Ghabezloo Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media, Eng. Fract. Mech., Volume 186 (2017), pp. 158-180

Cited by Sources:

Comments - Policy