Comptes Rendus
Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: A numerical survey
Comptes Rendus. Mécanique, Volume 347 (2019) no. 2, pp. 141-165.

A wisely chosen geometry of micro textures with the favorable relative motion of lubricated surfaces in contacts can enhance tribological characteristics. In this paper, a computational investigation related to the combined influence of bearing surface texturing and journal misalignment on the performances of hydrodynamic journal bearings is reported. To this end, a numerical analysis is performed to test three texture shapes: square “SQ”, cylindrical “CY”, and triangular “TR”, and shaft misalignment variation in angle and degree. The Reynolds equation of a thin viscous film is solved using a finite differences scheme and a mass conservation algorithm (JFO boundary conditions), taking into account the presence of textures on both full film and cavitation regions. Preliminary results are compared with benchmark data and are consistent with a positive enhancement in misaligned bearing performances (load carrying capacity and friction). The results suggest that the micro-step bearing mechanism is a key parameter, where the micro-pressure recovery action present in dimples located at the second angular part of the bearing (from 180° to 360°) can compensate for the loss on performances caused by shaft misalignment, while the micro-pressure drop effect at the full film region causes poor performances. Considering the right arrangement of textures on the contact surface, their contours geometries can have a significant impact on the performance of misaligned journal bearings, particularly at high eccentricity ratios, high misalignment degrees and when the misalignment angle α approaches to 0° or 180°.

Published online:
DOI: 10.1016/j.crme.2018.11.002
Keywords: Hydrodynamic journal bearing, JFO boundary conditions, Misalignment effect, Surface texturing, Dimple shapes

Belkacem Manser 1; Idir Belaidi 1; Abderrachid Hamrani 2; Sofiane Khelladi 3; Farid Bakir 3

1 LEMI, FSI, University of M'hamed Bougara, avenue de l'Indépendance, 35000 Boumerdes, Algeria
2 Department of Bioresource Engineering, McGill University, Sainte-Anne-de-Bellevue, Montreal, QC, Canada
3 DynFluid Lab., Arts et Métiers ParisTech, 151, boulevard de l'Hôpital, 75013 Paris, France
     author = {Belkacem Manser and Idir Belaidi and Abderrachid Hamrani and Sofiane Khelladi and Farid Bakir},
     title = {Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: {A} numerical survey},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {141--165},
     publisher = {Elsevier},
     volume = {347},
     number = {2},
     year = {2019},
     doi = {10.1016/j.crme.2018.11.002},
     language = {en},
AU  - Belkacem Manser
AU  - Idir Belaidi
AU  - Abderrachid Hamrani
AU  - Sofiane Khelladi
AU  - Farid Bakir
TI  - Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: A numerical survey
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 141
EP  - 165
VL  - 347
IS  - 2
PB  - Elsevier
DO  - 10.1016/j.crme.2018.11.002
LA  - en
ID  - CRMECA_2019__347_2_141_0
ER  - 
%0 Journal Article
%A Belkacem Manser
%A Idir Belaidi
%A Abderrachid Hamrani
%A Sofiane Khelladi
%A Farid Bakir
%T Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: A numerical survey
%J Comptes Rendus. Mécanique
%D 2019
%P 141-165
%V 347
%N 2
%I Elsevier
%R 10.1016/j.crme.2018.11.002
%G en
%F CRMECA_2019__347_2_141_0
Belkacem Manser; Idir Belaidi; Abderrachid Hamrani; Sofiane Khelladi; Farid Bakir. Performance of hydrodynamic journal bearing under the combined influence of textured surface and journal misalignment: A numerical survey. Comptes Rendus. Mécanique, Volume 347 (2019) no. 2, pp. 141-165. doi : 10.1016/j.crme.2018.11.002.

[1] M.M. Khonsari; E.R. Booser Applied Tribology: Bearing Design and Lubrication, vol. 12, John Wiley & Sons, 2008

[2] R.A. Mufti; M. Priest Theoretical and experimental evaluation of engine bearing performance, Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., Volume 223 (2009) no. 4, pp. 629-644

[3] J.Y. Jang; M.M. Khonsari On the characteristics of misaligned journal bearings, Lubricants, Volume 3 (2015) no. 1, pp. 27-53

[4] S.A. McKee; T.R. McKee Pressure distribution in oil films of journal bearings, Tribol. Int., Volume 57 (1932), pp. 149-165

[5] G.B. Dubois; H.H. Mabie; F.W. Ocvirk Experimental Investigation of Oil Film Pressure Distribution for Misaligned Plain Bearings, 1951 NACA Technical Note 2507(3)

[6] G.B. DuBois; F.W. Ocvirk; R.L. Wehe Properties of misaligned journal bearings, Trans. Amer. Soc. Mech. Eng., Volume 79 (1957) no. 1205-1, p. 2

[7] A.J. Smalley; H. McCallion Paper 5: the effect of journal misalignment on the performance of a journal bearing under steady running conditions, Proceedings of the Institution of Mechanical Engineers, Conference Proceedings, vol. 181, SAGE Publications Sage UK, London, England, 1966, pp. 45-54

[8] D.V. Singh; R. Sinhasan; R. Pal Performance characteristics of an ungrooved big-end bearing with misalignment, Tribol. Trans., Volume 32 (1989) no. 2, pp. 234-238

[9] J.R. Stokley; R.R. Donaldson Misalignment effects in 180° partial journal bearings, ASLE Trans., Volume 12 (1969) no. 3, pp. 216-226

[10] J.S. Ausman Torque produced by misalignment of hydrodynamic gas-lubricated journal bearings, J. Basic Eng., Volume 82 (1960) no. 2, pp. 335-340

[11] J.R. Rice Misalignment torques of hydrodynamic gas-lubricated journal bearings, J. Basic Eng., Volume 87 (1965) no. 1, pp. 193-198

[12] P. Monmousseau; M. Fillon Analysis of static and dynamic misaligned tilting-pad journal bearings, Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., Volume 213 (1999) no. 4, pp. 253-261

[13] A.M. El-Butch; N.M. Ashour Transient analysis of misaligned elastic tilting-pad journal bearing, Tribol. Int., Volume 38 (2005) no. 1, pp. 41-48

[14] L. San Andres The effect of journal misalignment on the operation of a turbulent flow hydrostatic bearing, J. Tribol., Volume 115 (1993) no. 3, pp. 355-363

[15] S.C. Jain; S.C. Sharma; T. Nagaraju Misaligned journal effects in liquid hydrostatic non-recessed journal bearings, Wear, Volume 210 (1997) no. 1–2, pp. 67-75

[16] J.O. Medwell; D.T. Gethin Synthesis of thermal effects in misaligned hydrodynamic journal bearings, Int. J. Numer. Methods Fluids, Volume 6 (1986) no. 7, pp. 445-458

[17] P. Arumugam; S. Swarnamani; B.S. Prabhu Effects of journal misalignment on the performance characteristics of three-lobe bearings, Wear, Volume 206 (1997) no. 1–2, pp. 122-129

[18] O. Pinkus; S.S. Bupara Analysis of misaligned grooved journal bearings, J. Lubr. Technol., Volume 101 (1979) no. 4, pp. 503-509

[19] K. Ikeuchi; S. Katsuse; K. Hamamura; H. Mori Effects of misalignment in full journal bearing with circumferential oil groove, Tokyo, Japan, Volume vol. 101 (1985), pp. 67-72

[20] D. Vijayaraghavan; T.G. Keith Effect of cavitation on the performance of a grooved misaligned journal bearing, Wear, Volume 134 (1989), pp. 377-397

[21] D. Vijayaraghavan; T.G. Keith Analysis of a finite grooved misaligned journal bearing considering cavitation and starvation effects, ASME J. Tribol., Volume 112 (1990), pp. 60-67

[22] J. Bouyer; M. Fillon Improvement of the THD performance of a misaligned plain journal bearing, J. Tribol., Volume 125 (2003) no. 2, pp. 334-342

[23] J.Y. Jang; M.M. Khonsari On the behavior of misaligned journal bearings based on mass-conservative thermohydrodynamic analysis, J. Tribol., Volume 132 (2010) no. 1

[24] P. Kumar; M.M. Khonsari Traction in EHL line contacts using free-volume pressure–viscosity relationship with thermal and shear-thinning effects, J. Tribol., Volume 131 (2009) no. 1

[25] Z.-p. He; J.-h. Zhang; W.-s. Xie; Z.-y. Li; G.-c. Zhang Misalignment analysis of journal bearing influenced by asymmetric deflection, based on a simple stepped shaft model, J. Zhejiang Univ. Sci. A, Volume 13 (2012) no. 9, pp. 647-664

[26] A.A. Elsharkawy Effects of misalignment on the performance of flexible porous journal bearings, Tribol. Trans., Volume 46 (2003) no. 1, pp. 119-127

[27] S.D. Gulwadi; G. Shrimpling Journal Bearing Analysis in Engines Using Simulation Techniques, 2003 (Tech. rep., SAE Technical Paper)

[28] Z.S. Safar; M.M. Elkotb; D.M. Mokhtar Analysis of misaligned journal bearings operating in turbulent regime, J. Tribol., Volume 111 (1989) no. 2, pp. 215-219

[29] G. Xu; J. Zhou; H. Geng; M. Lu; L. Yang; L. Yu Research on the static and dynamic characteristics of misaligned journal bearing considering the turbulent and thermohydrodynamic effects, J. Tribol., Volume 137 (2015) no. 2

[30] T.A. Osman Misalignment effect on the static characteristics of magnetized journal bearing lubricated with ferrofluid, Tribol. Lett., Volume 11 (2001) no. 3–4, pp. 195-203

[31] S. Das; S.K. Guha; A.K. Chattopadhyay On the steady-state performance of misaligned hydrodynamic journal bearings lubricated with micropolar fluids, Tribol. Int., Volume 35 (2002) no. 4, pp. 201-210

[32] X. Zhang; Z. Yin; D. Jiang; G. Gao; Y. Wang; X. Wang Load carrying capacity of misaligned hydrodynamic water-lubricated plain journal bearings with rigid bush materials, Tribol. Int., Volume 99 (2016), pp. 1-13

[33] L.A. Abdel-Latif; M.O.A. Mokhtar Misalignment effects on hydrodynamically lubricated journal bearings with rough surfaces, Wear, Volume 128 (1988) no. 3, pp. 225-237

[34] S.K. Guha Analysis of steady-state characteristics of misaligned hydrodynamic journal bearings with isotropic roughness effect, Tribol. Int., Volume 33 (2000) no. 1, pp. 1-12

[35] S.C. Sharma; S.C. Jain; T. Nagaraju Combined influence of journal misalignment and surface roughness on the performance of an orifice compensated non-recessed hybrid journal bearing, Tribol. Trans., Volume 45 (2002) no. 4, pp. 457-463

[36] J. Sun; M. Deng; Y. Fu; C. Gui Thermohydrodynamic lubrication analysis of misaligned plain journal bearing with rough surface, J. Tribol., Volume 132 (2010) no. 1

[37] N. Patir; H.S. Cheng An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication, J. Lubr. Technol., Volume 100 (1978) no. 1, pp. 12-17

[38] N. Patir; H.S. Cheng Application of average flow model to lubrication between rough sliding surfaces, J. Lubr. Technol., Volume 101 (1979) no. 2, pp. 220-229

[39] M. Qiu; B.R. Minson; B. Raeymaekers The effect of texture shape on the friction coefficient and stiffness of gas-lubricated parallel slider bearings, Tribol. Int., Volume 67 (2013), pp. 278-288

[40] I. Etsion State of the art in laser surface texturing, Trans. ASME F J. Tribol., Volume 127 (2005) no. 1, p. 248

[41] X. Wang; K. Kato Improving the anti-seizure ability of SiC seal in water with RIE texturing, Tribol. Lett., Volume 14 (2003) no. 4, pp. 275-280

[42] L.S. Stephens; R. Siripuram; M. Hayden; B. McCartt Deterministic micro asperities on bearings and seals using a modified LIGA process, ASME Turbo Expo 2002: Power for Land, Sea, and Air, American Society of Mechanical Engineers, 2002, pp. 573-580

[43] Y.G. Schneider Formation of surfaces with uniform micropatterns on precision machine and instruments parts, Precis. Eng., Volume 6 (1984) no. 4, pp. 219-225

[44] A. Greco; S. Raphaelson; K. Ehmann; Q.J. Wang; C. Lin Surface texturing of tribological interfaces using the vibromechanical texturing method, J. Manuf. Sci. Eng., Volume 131 (2009) no. 6

[45] M. Wakuda; Y. Yamauchi; S. Kanzaki; Y. Yasuda Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact, Wear, Volume 254 (2003) no. 3, pp. 356-363

[46] D.B. Hamilton; J.A. Walowit; C.M. Allen A theory of lubrication by micro-irregularities, J. Basic Eng., Volume 88 (1966) no. 1, pp. 177-185

[47] D. Gropper; L. Wang; Terry J. Harvey Hydrodynamic lubrication of textured surfaces: a review of modeling techniques and key findings, Tribol. Int., Volume 90 (2016), pp. 509-529

[48] M. Varenberg; G. Halperin; I. Etsion Different aspects of the role of wear debris in fretting wear, Wear, Volume 252 (2002) no. 11, pp. 902-910

[49] H. Yamakiri; S. Sasaki; T. Kurita; N. Kasashima Effects of laser surface texturing on friction behavior of silicon nitride under lubrication with water, Tribol. Int., Volume 44 (2011) no. 5, pp. 579-584

[50] X. Lu; M.M. Khonsari An experimental investigation of dimple effect on the Stribeck curve of journal bearings, Tribol. Lett., Volume 27 (2007) no. 2, p. 169

[51] N. Tala-Ighil; M. Fillon A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics, Tribol. Int., Volume 90 (2015), pp. 228-239

[52] N. Tala-Ighil; M. Fillon; P. Maspeyrot Effect of textured area on the performances of a hydrodynamic journal bearing, Tribol. Int., Volume 44 (2011) no. 3, pp. 211-219

[53] S. Kango; R.K. Sharma; R.K. Pandey Thermal analysis of microtextured journal bearing using non-Newtonian rheology of lubricant and JFO boundary conditions, Tribol. Int., Volume 69 (2014), pp. 19-29

[54] H.G. Elrod; M.L. Adams A computer program for cavitation and starvation problems, Cavitation and Related Phenomena in Lubrication, vol. 103, 1974, pp. 37-41

[55] H. Zhang; G. Dong; M. Hua; F. Guo; K.S. Chin Parametric design of surface textures on journal bearing, Ind. Lubr. Tribol., Volume 67 (2015) no. 4, pp. 359-369

[56] J.N. Anno; J.A. Walowit; C.M. Allen Microasperity lubrication, J. Lubr. Technol., Volume 90 (1968) no. 2, pp. 351-355

[57] K. Tønder Inlet roughness tribodevices: dynamic coefficients and leakage, Tribol. Int., Volume 34 (2001) no. 12, pp. 847-852

[58] K. Tønder Hydrodynamic effects of tailored inlet roughnesses: extended theory, Tribol. Int., Volume 37 (2004) no. 2, pp. 137-142

[59] I. Etsion; L. Burstein A model for mechanical seals with regular microsurface structure, Tribol. Trans., Volume 39 (1996) no. 3, pp. 677-683

[60] A.V. Olver; M.T. Fowell; H.A. Spikes; I.G. Pegg ‘Inlet suction’, a load support mechanism in non-convergent, pocketed, hydrodynamic bearings, Proc. Inst. Mech. Eng., Part J J. Eng. Tribol., Volume 220 (2006) no. 2, pp. 105-108

[61] M. Fowell; A.V. Olver; A.D. Gosman; H.A. Spikes; I. Pegg Entrainment and inlet suction: two mechanisms of hydrodynamic lubrication in textured bearings, J. Tribol., Volume 129 (2007) no. 2, pp. 336-347

[62] K. Yagi; J. Sugimura Balancing wedge action: a contribution of textured surface to hydrodynamic pressure generation, Tribol. Lett., Volume 50 (2013) no. 3, pp. 349-364

[63] T. Nanbu; N. Ren; Y. Yasuda; D. Zhu; Q.J. Wang Micro-textures in concentrated conformal-contact lubrication: effects of texture bottom shape and surface relative motion, Tribol. Lett., Volume 29 (2008) no. 3, pp. 241-252

[64] M.S. Uddin; T. Ibatan; S. Shankar Influence of surface texture shape, geometry and orientation on hydrodynamic lubrication performance of plane-to-plane slider surfaces, Lubr. Sci., Volume 29 (2017) no. 3, pp. 153-181

[65] B. Jakobsson The Finite Journal Bearing Considering Vaporization, Trans. Chalmers Univ. of Tech, Sweden, vol. 190, 1965

[66] K.-O. Olsson Cavitation in Dynamically Loaded Bearing, Trans. Chalmers Univ. of Tech, Sweden, vol. 308, 1957

[67] R. Ausas; P. Ragot; J. Leiva; M. Jai; G. Bayada; G.C. Buscaglia The impact of the cavitation model in the analysis of microtextured lubricated journal bearings, J. Tribol., Volume 129 (2007) no. 4, pp. 868-875

[68] P. Maspeyrot; J. Frene Paper iii (i) comparison between aligned and misaligned bearings under dynamic loading in both quasi-static and dynamic misalignment, Tribol. Ser., Volume 18 (1991) no. 7, pp. 19-26

[69] Y.L. Zhang; X.G. Zhang; G. Matsoukas Numerical study of surface texturing for improving tribological properties of ultra-high molecular weight polyethylene, Biosurf. Biotribol., Volume 1 (2015) no. 4, pp. 270-277

[70] A. de Kraker; R.A. van Ostayen; A. Van Beek; D.J. Rixen A multiscale method modeling surface texture effects, J. Tribol., Volume 129 (2007) no. 2, pp. 221-230

[71] D. Vijayaraghavan; T.G. Keith An efficient, robust, and time accurate numerical scheme applied to a cavitation algorithm, J. Tribol., Volume 112 (1990) no. 1, pp. 44-51

[72] M. Fesanghary; M.M. Khonsari A modification of the switch function in the Elrod cavitation algorithm, J. Tribol., Volume 133 (2011) no. 2

[73] W.H. Press The Art of Scientific Computing, Cambridge University Press, 1992

[74] B. Cherabi; A. Hamrani; I. Belaidi; S. Khelladi; F. Bakir An efficient reduced-order method with PGD for solving journal bearing hydrodynamic lubrication problems, C. R., Méc., Volume 344 (2016) no. 10, pp. 689-714

Cited by Sources:

Comments - Policy