Edge effects in hyperbolic paraboloidal nets are analyzed using a model that features the elastic resistance of the fibers of the net to flexure and twist in addition to the extensional elasticity of the conventional membrane theory of networks.
Les effets de bord dans les réseaux paraboloïdaux hyperboliques sont analysés à l'aide d'un modèle présentant la résistance élastique des fibres du réseau à la flexion et à la torsion en plus de l'élasticité en extension de la théorie conventionnelle des membranes pour les réseaux.
Accepted:
Published online:
Mots-clés : Milieux continus du second gradient, Flexion géodésique, Élasticité de la coque
Ivan Giorgio 1, 2; Francesco dell'Isola 1, 2; David J. Steigmann 3, 2
@article{CRMECA_2019__347_2_114_0, author = {Ivan Giorgio and Francesco dell'Isola and David J. Steigmann}, title = {Edge effects in {Hypar} nets}, journal = {Comptes Rendus. M\'ecanique}, pages = {114--123}, publisher = {Elsevier}, volume = {347}, number = {2}, year = {2019}, doi = {10.1016/j.crme.2019.01.003}, language = {en}, }
Ivan Giorgio; Francesco dell'Isola; David J. Steigmann. Edge effects in Hypar nets. Comptes Rendus. Mécanique, Volume 347 (2019) no. 2, pp. 114-123. doi : 10.1016/j.crme.2019.01.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.01.003/
[1] Stresses in Shells, Springer, Berlin, 1973
[2] Basic concepts and survey of tensile structures, Tensile Structures, vol. 2, 1966, pp. 11-96
[3] Hemp cables, a sustainable alternative to harmonic steel for cable nets, Resources, Volume 7 (2018) no. 4, p. 70
[4] Underconstrained Structural Systems, Springer, New York, 2012
[5] Equilibrium of elastic nets, Philos. Trans. R. Soc. Lond., Ser. A, Phys. Eng. Sci. (1991), pp. 419-454
[6] The method of virtual power in continuum mechanics, part 2: microstructure, SIAM J. Appl. Math., Volume 25 (1973) no. 3, pp. 556-575
[7] Second gradient of strain and surface-tension in linear elasticity, Int. J. Solids Struct., Volume 1 (1965) no. 4, pp. 417-438
[8] Elastic materials with couple-stresses, Arch. Ration. Mech. Anal., Volume 11 (1962) no. 1, pp. 385-414
[9] Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives, Math. Mech. Solids, Volume 22 (2017) no. 4, pp. 852-872
[10] Edge contact forces and quasi-balanced power, Meccanica, Volume 32 (1997) no. 1, pp. 33-52
[11] Linear pantographic sheets: existence and uniqueness of weak solutions, J. Elast., Volume 132 (2018) no. 2, pp. 175-196
[12] Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching, Acta Mech. Sin., Volume 31 (2015) no. 3, pp. 373-382
[13] Pattern formation in the three-dimensional deformations of fibered sheets, Mech. Res. Commun., Volume 69 (2015), pp. 164-171
[14] Strain gradient and generalized continua obtained by homogenizing frame lattices, Math. Mech. Complex Syst., Volume 6 (2018) no. 3, pp. 213-250
[15] A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium, Contin. Mech. Thermodyn., Volume 9 (1997) no. 5, pp. 241-257
[16] Homogenization of periodic graph-based elastic structures, J. École Polytech., Math., Volume 5 (2018), pp. 259-288
[17] Multiscale homogenization schemes for the construction of second-order grade anisotropic continuum media of architectured materials, Int. J. Multiscale Comput. Eng., Volume 15 (2017) no. 1
[18] Strain gradient continuum models for linear pantographic structures: a classification based on material symmetries, J. Geom. Symmetry Phys., Volume 40 (2015), pp. 35-52
[19] Determination of closed form expressions of the second-gradient elastic moduli of multi-layer composites using the periodic unfolding method, Math. Mech. Solids (2018) | DOI
[20] Computation of the effective nonlinear mechanical response of lattice materials considering geometrical nonlinearities, Comput. Mech., Volume 58 (2016) no. 6, pp. 957-979
[21] On the validity range of strain-gradient elasticity: a mixed static–dynamic identification procedure, Eur. J. Mech. A, Solids, Volume 69 (2018), pp. 179-191
[22] An inverse method to get further analytical solutions for a class of metamaterials aimed to validate numerical integrations, Mathematical Modelling in Solid Mechanics, Springer, 2017, pp. 193-210
[23] Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics, Math. Mech. Complex Syst., Volume 3 (2015) no. 3, pp. 285-308
[24] Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling, Contin. Mech. Thermodyn. (2018), pp. 1-15 | DOI
[25] Large deformations induced in planar pantographic sheets by loads applied on fibers: experimental validation of a discrete Lagrangian model, Mech. Res. Commun., Volume 76 (2016), pp. 51-56
[26] On the force density method for slack cable nets, Int. J. Solids Struct., Volume 49 (2012) no. 13, pp. 1526-1540
[27] A procedure for the static analysis of cable structures following elastic catenary theory, Int. J. Solids Struct., Volume 51 (2014) no. 7–8, pp. 1521-1533
[28] On generalized Cosserat-type theories of plates and shells: a short review and bibliography, Arch. Appl. Mech., Volume 80 (2010) no. 1, pp. 73-92
[29] A review on 2D models for the description of pantographic fabrics, Z. Angew. Math. Phys., Volume 67 (2016) no. 5, p. 121
[30] et al. Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Contin. Mech. Thermodyn. (2018) | DOI
[31] A second gradient formulation for a 2D fabric sheet with inextensible fibres, Z. Angew. Math. Phys., Volume 67 (2016) no. 5, p. 114
[32] Plane deformations of membranes formed with elastic cords, Q. J. Mech. Appl. Math., Volume 43 (1990) no. 3, pp. 317-333
[33] A two-dimensional gradient-elasticity theory for woven fabrics, J. Elast., Volume 118 (2015) no. 1, pp. 113-125
[34] Equilibrium analysis of finitely deformed elastic networks, Comput. Mech., Volume 17 (1996) no. 6, pp. 359-373
[35] Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches, Proc. R. Soc. A, Math. Phys. Eng. Sci., Volume 474 (2018) no. 2216 (20 pages)
[36] Out-of-plane buckling of pantographic fabrics in displacement-controlled shear tests: experimental results and model validation, Contin. Mech. Thermodyn. (2018), pp. 1-13 | DOI
[37] Buckling modes in pantographic lattices, C. R. Mecanique, Volume 344 (2016) no. 7, pp. 487-501
Cited by Sources:
Comments - Policy