Comptes Rendus
Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector
Comptes Rendus. Mécanique, Volume 347 (2019) no. 9, pp. 663-675.

Condition monitoring of gearboxes running under non-stationary operating conditions is a very difficult task. In this study, a signal processing technique is developed for damage detection of a bevel gearbox running under variable load and speed conditions. The proposed technique is applied on simulated vibration data computed through a dynamic model of bevel gearbox. The procedure used in this technique is based on the extraction of the shock related to the defect using the Shock Detector (SD) method. Firstly, vibration signals are decomposed into IMFs using Empirical Mode Decomposition (EMD). Then, the Teager–Kaiser Energy Operator (TKEO) is used to assess the instantaneous energy of the signal. Afterwards, SD is applied to examine and quantify the shock contents of the TKEO signal, which reflect the effect of the defect.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2019.08.003
Keywords: Fault diagnosis, Signal processing, Vibration, EMD, TKEO, Shock Detector

Ridha Ziani 1; Ahmed Hammami 2; Fakher Chaari 2; Ahmed Felkaoui 1; Mohamed Haddar 2

1 Laboratory of Applied Precision Mechanics, Institute of Optics and Precision Mechanics, Ferhat Abbes University Sétif 1, Sétif 19000, Algeria
2 Laboratory of Mechanics, Modeling and Production, National School of Engineers of Sfax, BP 1173, 3038 Sfax, Tunisia
@article{CRMECA_2019__347_9_663_0,
     author = {Ridha Ziani and Ahmed Hammami and Fakher Chaari and Ahmed Felkaoui and Mohamed Haddar},
     title = {Gear fault diagnosis under non-stationary operating mode based on {EMD,} {TKEO,} and {Shock} {Detector}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {663--675},
     publisher = {Elsevier},
     volume = {347},
     number = {9},
     year = {2019},
     doi = {10.1016/j.crme.2019.08.003},
     language = {en},
}
TY  - JOUR
AU  - Ridha Ziani
AU  - Ahmed Hammami
AU  - Fakher Chaari
AU  - Ahmed Felkaoui
AU  - Mohamed Haddar
TI  - Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 663
EP  - 675
VL  - 347
IS  - 9
PB  - Elsevier
DO  - 10.1016/j.crme.2019.08.003
LA  - en
ID  - CRMECA_2019__347_9_663_0
ER  - 
%0 Journal Article
%A Ridha Ziani
%A Ahmed Hammami
%A Fakher Chaari
%A Ahmed Felkaoui
%A Mohamed Haddar
%T Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector
%J Comptes Rendus. Mécanique
%D 2019
%P 663-675
%V 347
%N 9
%I Elsevier
%R 10.1016/j.crme.2019.08.003
%G en
%F CRMECA_2019__347_9_663_0
Ridha Ziani; Ahmed Hammami; Fakher Chaari; Ahmed Felkaoui; Mohamed Haddar. Gear fault diagnosis under non-stationary operating mode based on EMD, TKEO, and Shock Detector. Comptes Rendus. Mécanique, Volume 347 (2019) no. 9, pp. 663-675. doi : 10.1016/j.crme.2019.08.003. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.08.003/

[1] C.M. Vicuñan; F. Chaari Analysis of a planetary gearbox under non-stationary operating conditions: numerical and experimental results, Lyon, France, 15 December 2014 (F. Chaari; R. Zimroz; W. Bartelmus; M. Haddar, eds.) (Applied Condition Monitoring), Springer, Cham, Switzerland (2016), pp. 351-362

[2] R. Zimroz; W. Bartelmus Gearbox condition estimation using cyclo-stationary properties of vibration signal, Key Eng. Mater., Volume 413 (2009), pp. 471-478

[3] M. Cocconcelli; R. Zimroz; R. Rubini; W. Bartelmus STFT based approach for ball bearing fault detection in a varying speed motor (T. Fakhfakh; W. Bartelmus; F. Chaari; R. Zimroz; M. Haddar, eds.), Condition Monitoring of Machinery in Non-Stationary Operations, Springer, Berlin, Heidelberg, 2012, pp. 41-50

[4] L. Hongmei; L. Lianfeng; M. Jian Rolling bearing fault diagnosis based on STFT-deep learning and sound signals, Shock Vib., Volume 2 (2016), pp. 1-12 | DOI

[5] R. Chaari; M.T. Khabou; M. Barkallah; F. Chaari; M. Haddar Dynamic analysis of gearbox behaviour in milling process: non-stationary operations, Proc. Inst. Mech. Eng. C, J. Mech., Volume 19 (2016), pp. 3372-3388

[6] K. Worden; W.J. Staszewski; J.J. Hensman Natural computing for mechanical systems research: a tutorial overview, Mech. Syst. Signal Process., Volume 25 (2011), pp. 4-111

[7] H. Li, Y. Zhang, Bearing faults diagnosis based on EMD and Wigner-Ville Distribution, in: Proceedings of the World Congress on Intelligent Control and Automation (WCICA), Dalian, China, 21–23 June 2006, pp. 5447–5451.

[8] J. Zhang; Z. Feng; Z. Qin; F. Chu Gearbox fault diagnosis using time-wavelet energy spectral analysis (T. Fakhfakh; W. Bartelmus; F. Chaari; R. Zimroz; M. Haddar, eds.), Condition Monitoring of Machinery in Non-Stationary Operations, Springer, Berlin, Heidelberg, 2012, pp. 223-230

[9] K. Aharamuthu; E.P. Ayyasamy Application of discrete wavelet transform and Zhao-Atlas-Marks transforms in non-stationary gear fault diagnosis, J. Mech. Sci. Technol., Volume 27 (2013), pp. 641-647

[10] X. Cheng; X. Zhang; L. Zhao; A. Deng; Y. Bao; Y. Liu; Y. Jiang The application of shuffled frog leaping algorithm to wavelet neural networks for acoustic emission source location, C. R. Mecanique, Volume 342 (2014) no. 4, pp. 229-233

[11] C. Junsheng; X.W. Ma; Y. Yang Gear fault diagnosis method based on VPMCD and EMD, J. Vib. Shock, Volume 32 (2013), pp. 9-13

[12] Y. Lv; R. Yuan; G. Song Multivariate empirical mode decomposition and its application to fault diagnosis of rolling bearing, Mech. Syst. Signal Process., Volume 81 (2016), pp. 219-234

[13] R. Ziani; A. Felkaoui; R. Zegadi Bearing fault diagnosis using multiclass support vector machines with binary particle swarm optimization and regularized Fisher's criterion, J. Intell. Manuf., Volume 28 (2017) no. 2, pp. 405-417

[14] X. Yu; F. Dong; E. Ding; C. Fan Rolling bearing fault diagnosis using modified LFDA and EMD with sensitive feature selection, IEEE Access, Volume 6 (2018), pp. 3715-3730

[15] Z. German-Sallo; H.S. Grif Hilbert-Huang transform in fault detection, Procedia Manuf., Volume 32 (2019), pp. 591-595

[16] D. Yu; Y. Yang; J. Cheng Application of time–frequency entropy method based on Hilbert–Huang transform to gear fault diagnosis, Measurement, Volume 40 (2007), pp. 823-830

[17] F. Chaari; W. Baccar; M.S. Abbes; M. Haddar Effect of spalling or tooth breakage on gearmesh stiffness and dynamic response of a one-stage spur gear transmission, Eur. J. Mech. A, Solids, Volume 27 (2008) no. 4, pp. 691-705

[18] H. Mahgoun; F. Chaari; A. Felkaoui Detection of gear faults in variable rotating speed using variational mode decomposition (VMD), Mech. Ind., Volume 17 (2016) no. 2, pp. 207-221

[19] B. Badri; M. Thomas; S. Sadok A shock filter for bearing slipping detection and multiple damage diagnosis, Int. J. Mech., Volume 5 (2011) no. 4, pp. 318-326

[20] T. Peng Coupled Multi-Body Dynamic and Vibration Analysis of Hypoid and Bevel Geared Rotor System, University of Cincinnati, OH, USA, 2010 (Ph.D. Thesis)

[21] M. Karray; F. Chaari; F. Viadero; A.F. del Rincon; M. Haddar Dynamic response of single stage bevel gear transmission in presence of local damage, Proc. 4th European Conference on Mechanism Science (EUCOMES 2012), Santander, Spain, 18–22 September 2012 (F. Viadero; M. Ceccarelli, eds.) (Mechanisms and Machine Science), Volume vol. 7, Springer, Dordrecht, Heidelberg, New York, London (2013), pp. 337-345

[22] V. Sharma; A. Parey A review of gear fault diagnosis using various condition indicators, Proc. Eng., Volume 144 (2015), pp. 253-263

[23] N.E. Huang; Z. Shen; S.R. Long The empirical mode decomposition and the Hubert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. Lond. A, Volume 454 (1998), pp. 903-995

[24] X. Hu; S. Peng; W. Hwang EMD revisited: a new understanding of the envelope and resolving the mode-mixing problem in AM-FM signals, IEEE Trans. Signal Process., Volume 60 (2012) no. 3, pp. 1075-1086

[25] J.F. Kaiser Some useful properties of Teager's energy operators, Minneapolis, MN, USA, 27–30 April 1993, Volume vol. 3 (1993), pp. 149-152

[26] A.O. Boudraa; F. Salzensteinb Teager–Kaiser energy methods for signal and image analysis: a review, Digit. Signal Process., Volume 78 (2018), pp. 1-38

Cited by Sources:

Comments - Policy