Comptes Rendus
An efficient Tabu-search optimized regression for data-driven modeling
Comptes Rendus. Mécanique, Volume 347 (2019) no. 11, pp. 806-816.

In the past decade, data science became trendy and in-demand due to the necessity to capture, process, maintain, analyze and communicate data. Multiple regressions and artificial neural networks are both used for the analysis and handling of data. This work explores the use of meta-heuristic optimization to find optimal regression kernel for data fitting. It is shown that optimizing the regression kernel improve both the fitting and predictive ability of the regression. For instance, Tabu-search optimization is used to find the best least-squares regression kernel for different applications of buckling of straight columns and artificially generated data. Four independent parameters were used as input and a large pool of monomial search domain is initially considered. Different input parameters are also tested and the benefits of using of independent input parameters is shown.

Received:
Accepted:
Published online:
DOI: 10.1016/j.crme.2019.11.006
Keywords: Optimized regression, Tabu-search, Kernel optimization, Data-driven

Chady Ghnatios 1; Ré-Mi Hage 2; Ilige Hage 1

1 Notre Dame University–Louaize, Department of Mechanical Engineering, Zouk Mosbeh, PO Box 72, Lebanon
2 Notre Dame University–Louaize, Mathematics Department, Zouk Mosbeh, PO Box 72, Lebanon
@article{CRMECA_2019__347_11_806_0,
     author = {Chady Ghnatios and R\'e-Mi Hage and Ilige Hage},
     title = {An efficient {Tabu-search} optimized regression for data-driven modeling},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {806--816},
     publisher = {Elsevier},
     volume = {347},
     number = {11},
     year = {2019},
     doi = {10.1016/j.crme.2019.11.006},
     language = {en},
}
TY  - JOUR
AU  - Chady Ghnatios
AU  - Ré-Mi Hage
AU  - Ilige Hage
TI  - An efficient Tabu-search optimized regression for data-driven modeling
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 806
EP  - 816
VL  - 347
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2019.11.006
LA  - en
ID  - CRMECA_2019__347_11_806_0
ER  - 
%0 Journal Article
%A Chady Ghnatios
%A Ré-Mi Hage
%A Ilige Hage
%T An efficient Tabu-search optimized regression for data-driven modeling
%J Comptes Rendus. Mécanique
%D 2019
%P 806-816
%V 347
%N 11
%I Elsevier
%R 10.1016/j.crme.2019.11.006
%G en
%F CRMECA_2019__347_11_806_0
Chady Ghnatios; Ré-Mi Hage; Ilige Hage. An efficient Tabu-search optimized regression for data-driven modeling. Comptes Rendus. Mécanique, Volume 347 (2019) no. 11, pp. 806-816. doi : 10.1016/j.crme.2019.11.006. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.11.006/

[1] R. Ibanez; D. Borzacchiello; J. Vicente Aguado; E. Abisset-Chavanne; E. Cueto; P. Ladeveze; F. Chinesta Data-driven non-linear elasticity: constitutive manifold construction and problem discretization, Comput. Mech., Volume 60 (2017) no. 5, pp. 813-826

[2] R. Ibanez; E. Abisset-Chavanne; J. Vicente Aguado; D. Gonzalez; E. Cueto; F. Chinesta A manifold learning approach to data driven computational elasticity and inelasticity, Arch. Comput. Methods Eng., Volume 25 (2018) no. 1, pp. 47-57

[3] W.C. Moore; S. Balachandar; G. Akiki A hybrid point-particle force model that combines physical and data-driven approaches, J. Comput. Phys., Volume 385 ( May 2019 ), pp. 187-208

[4] M. Cerny Narrow big data in a stream: computational limitation and regression, Inf. Sci., Volume 486 (2019), pp. 379-392

[5] Z. Zhang; Z. Le; G. Gao; Y. Tian Bi-sparse optimization-based least squares regression, Appl. Soft Comput. J., Volume 77 (2019), pp. 300-315

[6] Z. Chen; Y. Zhou; X. He Handling expensive multi-objective optimization problems with a cluster-based neighborhood regression model, Appl. Soft Comput., Volume 80 (2019), pp. 211-225

[7] M. Zhu; A. Han; Y.-Q. Wen; W.-Q. Sun Optimized support vector regression algorithm-based modeling of ship dynamics, Appl. Ocean Res., Volume 90 (2019), pp. 1-17

[8] M. Strazar; T. Cruk Approximate multiple kernel learning with least-angle regression, Neurocomputing, Volume 7 (2019), pp. 245-258

[9] J. Pacheco; S. Casado; L. Nunez A variable selection method based on tabu search for logistic regression models, Eur. J. Oper. Res., Volume 199 (2009), pp. 506-511

[10] R.M. Hage; I. Hage; C. Ghnatios; I.S. Jawahir; R. Hamadey Optimized tabu search estimation of wear characteristics and cutting forces in compact core drilling of basalt rock using pcd tool inserts, Comput. Ind. Eng., Volume 136 (2019), pp. 477-493

[11] F. Glover Future paths for integer programming and links to artificial intelligence, Comput. Oper. Res., Volume 13 (1986) no. 5, pp. 533-540

[12] S. Gholizadeh; H. Barati Comparative study of three metaheuristics for optimum design of trusses, Int. J. Optim. Civ. Eng., Volume 3 (2012), pp. 423-441

[13] F.G. Gomes de Freitas; C.L. Brito Maia; G.A. Lima de Campos; J. Teixeira de Souza Optimization in software testing using metaheuristics, Rev. Sist. Inf. FSMA, Volume 5 (2010), pp. 3-13

[14] M. Khajehzadeh; M. Raihan-Taha; A. El-Shafie; M. Eslami A survey on meta-heuristic global optimization algorithms, Res. J. Appl. Sci., Eng. Technol., Volume 3 (2011) no. 6, pp. 569-578

[15] A.R. Yildiz A novel particle swarm optimization approach for product design and manufacturing, Int. J. Adv. Manuf. Technol., Volume 40 (2009) no. 5, pp. 617-628

[16] I. Mukherjee; O.K. Ray A review of optimization techniques in metal cutting processes, Comput. Ind. Eng., Volume 50 (2006) no. 4, pp. 15-34

[17] N. Yusup; A.M. Zain; S.Z.M. Hashim Evolutionary techniques in optimizing machining parameters: review and recent applications (2007-2011), Expert Syst. Appl., Volume 39 (2012) no. 10, pp. 9909-9927

[18] M. Madic; D. Markovic; M. Radovanovic Comparison of meta-heuristic algorithms for solving machining optimization problems, Facta Univ., Mech. Eng., Volume 11 (2013) no. 1, pp. 29-44

[19] G. Abd El-Nasser Said; A.M. Mahmoud; E.-S. El-Horbaty A comparative study of meta-heuristic algorithms for solving quadratic assignment problem, Int. J. Adv. Comput. Sci. Appl., Volume 5 (2014) no. 1, pp. 1-6

[20] E.H.L. Aarts Local Search in Combinatorial Optimization, John Wiley & Sons, Chichester, 1997

[21] F. Glover; M. Laguna Tabu Search, Kluwer Academic Publishers, Boston, 1998

[22] Z. Drezner; G. Marcoulides Tabu search model selection in multiple regression analysis, Commun. Stat. Part B, Simul. Comput., Volume 28 (1999) no. 2, pp. 349-367

[23] M. Antosiewicz; G. Koloch; B. Kaminski Choice of best possible metaheuristic algorithm for the travelling salesman problem with limited computational time: quality, uncertainty and speed, J. Theor. Appl. Comput. Sci., Volume 7 (2013) no. 1, pp. 46-55

[24] R. Hage; I. Hage; C. Ghnatios; R. Hamade Statistically validated and optimized tabu search estimation of cutting tool life in turning, ASME 2018 International Mechanical Engineering Congress and Exposition, 2018

Cited by Sources:

Comments - Policy