Comptes Rendus
Data-driven modeling and learning in science and engineering
Comptes Rendus. Mécanique, Volume 347 (2019) no. 11, pp. 845-855.

In the past, data in which science and engineering is based, was scarce and frequently obtained by experiments proposed to verify a given hypothesis. Each experiment was able to yield only very limited data. Today, data is abundant and abundantly collected in each single experiment at a very small cost. Data-driven modeling and scientific discovery is a change of paradigm on how many problems, both in science and engineering, are addressed. Some scientific fields have been using artificial intelligence for some time due to the inherent difficulty in obtaining laws and equations to describe some phenomena. However, today data-driven approaches are also flooding fields like mechanics and materials science, where the traditional approach seemed to be highly satisfactory. In this paper we review the application of data-driven modeling and model learning procedures to different fields in science and engineering.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/j.crme.2019.11.009
Mots clés : Data-driven science, Data-driven modeling, Artificial intelligence, Machine learning, Data-science, Big data
Francisco J. Montáns 1 ; Francisco Chinesta 2 ; Rafael Gómez-Bombarelli 3 ; J. Nathan Kutz 4

1 Escuela Técnica Superior de Ingenieros Aeronáuticos, Universidad Politécnica de Madrid, Plaza Cardenal Cisneros 3, 28045 Madrid, Spain
2 ESI Group Chair @ PIMM, Arts et Métiers ParisTech, 151, boulevard de l'Hôpital, 75013 Paris, France
3 Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
4 Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA
@article{CRMECA_2019__347_11_845_0,
     author = {Francisco J. Mont\'ans and Francisco Chinesta and Rafael G\'omez-Bombarelli and J. Nathan Kutz},
     title = {Data-driven modeling and learning in science and engineering},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {845--855},
     publisher = {Elsevier},
     volume = {347},
     number = {11},
     year = {2019},
     doi = {10.1016/j.crme.2019.11.009},
     language = {en},
}
TY  - JOUR
AU  - Francisco J. Montáns
AU  - Francisco Chinesta
AU  - Rafael Gómez-Bombarelli
AU  - J. Nathan Kutz
TI  - Data-driven modeling and learning in science and engineering
JO  - Comptes Rendus. Mécanique
PY  - 2019
SP  - 845
EP  - 855
VL  - 347
IS  - 11
PB  - Elsevier
DO  - 10.1016/j.crme.2019.11.009
LA  - en
ID  - CRMECA_2019__347_11_845_0
ER  - 
%0 Journal Article
%A Francisco J. Montáns
%A Francisco Chinesta
%A Rafael Gómez-Bombarelli
%A J. Nathan Kutz
%T Data-driven modeling and learning in science and engineering
%J Comptes Rendus. Mécanique
%D 2019
%P 845-855
%V 347
%N 11
%I Elsevier
%R 10.1016/j.crme.2019.11.009
%G en
%F CRMECA_2019__347_11_845_0
Francisco J. Montáns; Francisco Chinesta; Rafael Gómez-Bombarelli; J. Nathan Kutz. Data-driven modeling and learning in science and engineering. Comptes Rendus. Mécanique, Volume 347 (2019) no. 11, pp. 845-855. doi : 10.1016/j.crme.2019.11.009. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.1016/j.crme.2019.11.009/

[1] https://en.wikipedia.org/wiki/Novum_Organum Wikipedia team (Addressed 11/22/2018):

[2] F. Mazzocchi Could big data be the end of the theory in science? A few remarks on the epistemology of data-driven science, EMBO Rep., Volume 16 (2015) no. 10, pp. 1250-1255

[3] L. Cao Data science: a comprehensive overview, ACM Comput. Surv., Volume 50 (2017) no. 3, p. 43

[4] U. Fayyad; G. Piatetsky-Saphiro; P. Smyth From data mining to knowledge discovery in databases, AI Mag., Volume 17 (1996) no. 3, pp. 37-54

[5] T. Hey; S. Tansley; K.M. Tolle The Fourth Paradigm: Data-Intensive Scientific Discovery, Vol. 1, Microsoft Research, Redmond, WA, 2009

[6] C.M. Bishop Pattern Recognition and Machine Learning, Information Science and Statistics, Springer-Verlag New York Inc., Secaucus, NJ, USA, 2006

[7] P. Langley; J.M. Zytkow Data-driven approaches to empirical discovery, Artif. Intell., Volume 40 (1989), pp. 283-312

[8] S.L. Brunton; J.L. Proctor; J.N. Kutz Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. (2016) (201517384)

[9] J.-C. Loiseau; S.L. Brunton Constrained sparse Galerkin regression, J. Fluid Mech., Volume 838 (2018), pp. 42-67

[10] M. Raissi; P. Perdikaris; G.E. Karniadakis Physics informed deep learning (Part II): data-driven discovery of nonlinear partial differential equations, 2017 | arXiv

[11] S.H. Rudy; S.L. Brunton; J.L. Proctor; J.N. Kutz Data-driven discovery of partial differential equations, Sci. Adv., Volume 3 (2017) no. 4

[12] P. Angelikopoulos; C. Papadimitriou; P. Loumoutsakos Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty, J. Phys. Chem. B, Volume 117 (2013) no. 47, pp. 14808-14816

[13] P.E. Bourne; V. Bonazzi; M. Dunn; E.D. Green; M. Guyer; G. Komatsoulis; J. Larkin; B. Russell The NIH big data to knowledge (BD2K) initiative, J. Amer. Med. Inform. Assoc., Volume 22 (2015) no. 6, p. 1114

[14] N. Merchant; E. Lyons; S. Goff; M. Vaughn; D. Ware; D. Mickos; P. Antin The iPlant collaborative: cyberintraestructure for enabling data to discovery for the life sciences, PLoS Biol., Volume 14 (2016) no. 1

[15] A. Gaudinier; S.M. Brady Mapping transcriptional networks in plants: data-driven discovery of novel biological mechanisms, Annu. Rev. Plant Biol., Volume 67 (2016), pp. 575-594

[16] R. Lokers; R. Knapen; S. Janssen; Y. van Randen; J. Jansen Analysis of Big Data technologies for use in agro-environmental science, Environ. Model. Softw., Volume 84 (2016), pp. 494-504

[17] M. Schmidt; H. Lipson Distilling free-form natural laws from experimental data, Science, Volume 324 (2009) no. 5923, pp. 81-85

[18] K. Kaiser; J.N. Kutz; S.L. Brunton Discovering conservation laws from data for control, Miami Beach, FL, Dec 17–19, 2018 (2018), pp. 6415-6421

[19] B.A. Le; J. Yvonnet; Q.C. He Computational homogenization of nonlinear elastic materials using neural networks, Int. J. Numer. Methods Eng., Volume 104 (2015), pp. 1061-1084

[20] F. El Halabi; D. González; J.A. Sanz-Herrera; M. Doblaré A PGD-based multiscale formulation for non-linear solid mechanics under small deformations, Comput. Methods Appl. Mech. Eng., Volume 305 (2016), pp. 806-826

[21] F. Fritzen; O. Kunc Two-stage data-driven homogenization for nonlinear solids using a reduced order model, Eur. J. Mech. A, Solids, Volume 69 (2018), pp. 201-220

[22] X. Lu; D.G. Giovanis; J. Yvonnet; V. Papadopoulus; F. Detrez; J. Bai A data-driven computational homogenization method based on neural networks for the nonlinear anisotropic electrical response of graphene/polymer nanocomposites, Comput. Mech., Volume 64 (2019), pp. 307-321

[23] N.H. Paulson; M.W. Priddy; D.L. McDowell; S.R. Kalidindi Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures, Mater. Des., Volume 154 (2018), pp. 170-183 | DOI

[24] A. Rovinelli; M.D. Sangid; H. Proudhon; W. Ludwig Using machine learning and a data-driven approach to identify the small fatigue crack driving force in polycrystalline materials, Comput. Mech., Volume 4 (2018), p. 35 | DOI

[25] W. Yan; S. Lin; O.L. Kafka; Y. Lian; C. Yu; Z. Liu; J. Yan; S. Wolff; H. Wu; E. Ndip-Agbor; M. Mozaffar; K. Ehmann; J. Cao; G.J. Wagner; W.K. Liu Data-driven multi-scale multi-physics models to derive process-structure-property relationships for additive manufacturing, Comput. Mech., Volume 61 (2018), pp. 521-541

[26] K. Wang; W. Sun A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning, Comput. Methods Appl. Mech. Eng., Volume 334 (2018), pp. 337-380

[27] I. Temizer; T.I. Zohdi A numerical method for homogenization in non-linear elasticity, Comput. Mech., Volume 40 (2007), pp. 281-298

[28] D. Ryckelynck A priori hyperreduction method: an adaptive approach, J. Comput. Phys., Volume 202 (2005), pp. 346-366

[29] D. Ryckelynck Hyper-reduction of mechanical models involving internal variables, Int. J. Numer. Methods Eng., Volume 77 (2009) no. 1, pp. 75-89

[30] F. Chinesta; A. Leygue; F. Bordeu; J.V. Aguado; E. Cueto; D. Gonzalez; I. Alfaro Parametric PGD based computational vademecum for efficient design, optimization and control, Arch. Comput. Methods Eng., Volume 20 (2013) no. 1, pp. 31-59

[31] D. Neron; P. Ladeveze Proper generalized decomposition for multiscale and multiphysics problems, Arch. Comput. Methods Eng., Volume 17 (2010), pp. 351-372

[32] M. Cremonesi; P.-A. Neron; D. Guidault; P. Ladeveze A PGD-based homogenization technique for the resolution of nonlinear multiscale problems, Comput. Methods Appl. Mech. Eng., Volume 267 (2013), pp. 275-292

[33] D. González; A. Badias; I. Alfaro; F. Chinesta; E. Cueto Model order reduction for real-time data assimilation through extended Kalman filters, Comput. Methods Appl. Mech. Eng., Volume 326 (2017), pp. 679-693

[34] M.A. Bessa; R. Bostanabad; Z. Liu; A. Hu; D.W. Apley; C. Brinson; W. Chen; W.K. Liu A framework for data-driven analysis of materials under uncertainly: countering the curse of dimensionality, Comput. Methods Appl. Mech. Eng., Volume 320 (2017), pp. 633-667

[35] S. Tang; L. Zhang; W.K. Liu From virtual clustering analysis to self-consistent clustering analysis: a mathematical study, Comput. Mech., Volume 62 (2018), pp. 1143-1460

[36] P. Ma; C.I. Castillo-Davis; W. Zhong; J.S. Liu A data-driven clustering method for time course gene expression data, Nucleic Acids Res., Volume 34 (2006), pp. 1261-1269

[37] J. Yvonnet; D. Gonzalez; Q.-C. He Numerically explicit potentials for the homogenization of nonlinear elastic homogeneous materials, Comput. Methods Appl. Mech. Eng., Volume 198 (2009), pp. 2723-2737

[38] J. Yvonnet; E. Monteiro; Q.-C. He Computational homogenization method and reduced database model for hyperelastic heterogeneous structures, Int. J. Multiscale Comput. Eng., Volume 11 (2013), pp. 201-225

[39] L. Xia; P. Breitkopf Multiscale structural topology optimization with an approximate constitutive model for local material microstructure, Comput. Methods Appl. Mech. Eng., Volume 104 (2015), pp. 1061-1084

[40] N.H. Paulson; M.W. Priddy; D.L. McDowell; S.R. Kalidindi Data-driven reduced-order models for rank-ordering the high cycle fatigue performance of polycrystalline microstructures, Mater. Des., Volume 154 (2018), pp. 170-183 | DOI

[41] D. Ryckelynck Hyper-reduction framework for model calibration in plasticity-induced fatigue, Adv. Model. Simul. Eng. Sci., Volume 3 (2016) no. 15

[42] S.R. Kalidindi; M. De Graef Materials data science: current status and future outlook, Annu. Rev. Mater. Res., Volume 45 (2015), pp. 171-193

[43] B. Ganapathysubramanian; N. Zabaras Modeling diffusion in random heterogeneous media: data-driven models, stochastic collocation and the variational multiscale method, J. Comput. Phys., Volume 226 (2007), pp. 326-353

[44] R. Ramprasad; R. Batra; G. Pilania; A. Mannodi-Kanakkithodi; C. Kim Machine learning in materials informatics: recent applications and prospects, Comput. Mat., Volume 3 (2017), p. 54 | DOI

[45] N. Relun; D. Neron; P.A. Boucard A model reduction technique based on the PGD for elastic-viscoplastic computational analysis, Comput. Mech., Volume 51 (2013), pp. 83-92

[46] C. Zopf; M. Kaliske Numerical characterization of uncured elastomers by a neural network based approach, Comput. Struct., Volume 182 (2017), pp. 504-525

[47] I. Kopal; I. Labaj; M. Harnicarova; J. Valicek; D. Hruby Prediction of the tensile response of carbon black filled rubber blends by artificial neural network, Polymers, Volume 10 (2018) no. 6, p. 644

[48] A. Serafinska; N. Hassoun; M. Kaliske Numerical optimization of wear performance. Utilizing a metamodel based friction law, Comput. Struct., Volume 165 (2016), pp. 10-23

[49] W. Graf; M. Gütz; F. Leichsenring; M. Kaliske Computational intelligence for efficient numerical design of structures with uncertain parameters, 2015 IEEE Symposium Series on Computational Intelligence, 2015, pp. 1824-1831

[50] S. Bhattacherjee; K. Matous A nonlinear manifold-based reduced order model for multiscale analysis of heterogeneous hyperelastic materials, J. Comput. Phys., Volume 313 (2016), pp. 635-653

[51] T. Sussman; K.J. Bathe A model of incompressible isotropic hyperelastic material behavior using spline interpolations of tension-compression data, Commun. Numer. Methods Eng., Volume 25 (2009) no. 1, pp. 53-63

[52] J. Crespo; M. Latorre; F.J. Montáns WYPIWYG hyperelasticity for isotropic, compressible materials, Comput. Mech., Volume 59 (2017) no. 1, pp. 73-92

[53] J. Crespo; F.J. Montáns Function-refresh algorithms for determining the stored energy density of nonlinear elastic orthotropic materials directly from experimental data, Int. J. Non-Linear Mech., Volume 107 (2018), pp. 16-33

[54] J. Crespo; F.J. Montáns General solution procedures to compute the stored energy density of conservative solids directly from experimental data, Int. J. Eng. Sci., Volume 141 (2019), pp. 16-34

[55] M. Miñano; F.J. Montáns WYPiWYG damage mechanics for soft materials: a data-driven approach, Arch. Comput. Methods Eng., Volume 25 (2018), pp. 165-193

[56] M. Latorre; F.J. Montáns Fully anisotropic finite strain viscoelasticity based on a reverse multiplicative decomposition and logarithmic strains, Comput. Struct., Volume 163 (2016), pp. 56-70

[57] M. Latorre; F.J. Montáns Strain-level dependent nonequilibrium anisotropic viscoelasticity: application to the abdominal muscle, J. Biomech. Eng., Volume 139 (2017) no. 10

[58] T. Kichdoerfer; M. Ortiz Data-driven computational mechanics, Comput. Methods Appl. Mech. Eng., Volume 304 (2016), pp. 81-101

[59] A. Leygue, M. Coret, J. Rethore, L. Stainier, E. Verron, Data driven constitutive identification, 2017, HAL ID: hal-01452492v2.

[60] L.T.K. Nguyen; M-A. Keip A data-driven approach to nonlinear elasticity, Comput. Struct., Volume 194 (2018), pp. 97-115

[61] R. Ibañez; D. Borzacchiello; J.V. Aguado; E. Abisset-Chavane; E. Cueto; P. Ladeveze; F. Chinesta Data-driven non-linear elasticity: constitutive manifold construction and problem discretization, Comput. Mech., Volume 60 (2017), pp. 813-826

[62] R. Ibañez; E. Abisset-Chavanne; J.V. Aguado; D. Gonzalez; E. Cueto; F. Chinesta A manifold-based methodological approach to data-driven computational elasticity and inelasticity, Arch. Comput. Methods Eng., Volume 25 (2018) no. 1, pp. 47-57

[63] D. González; F. Chinesta; E. Cueto Thermodynamically consistent data-driven computational mechanics, Contin. Mech. Thermodyn., Volume 31 (2019) no. 1, pp. 239-253 | DOI

[64] T. Kirchdoerfer; M. Ortiz Data driven computing with noisy material data sets, Comput. Methods Appl. Mech. Eng., Volume 326 (2017), pp. 622-641

[65] S.F. Gull; J. Skilling Maximum entropy method in image processing, IEE Proc. F, Commun. Radar Signal Process., Volume 131 (1984), pp. 646-659

[66] H. Wang; J.F. O'Brien; R. Ramammoorthi Data-driven elastic models for cloth: modeling and measurement, ACM Trans. Graph., Volume 30 (2011) no. 4, p. 71

[67] R. Ibañez; E. Abisset-Chavanne; D. Gonzalez; J.L. Duval; E. Cueto; F. Chinesta Hybrid constitutive modeling: data-driven learning of corrections to plasticity models, Int. J. Mater. Form., Volume 12 (2019) no. 4, pp. 717-725 | DOI

[68] Y. Feng; S. Mitran Data-driven reduced-order model of microtubule mechanics, Cytoskeleton, Volume 75 (2018), pp. 45-60

[69] J. Ku; J.L. Hicks; T. Hastie; J. Leskivec; C. Re; S.L. Delp The mobilize center: an NIH big data to knowledge center to advance human movement research and improve mobility, J. Amer. Med. Inform. Assoc., Volume 22 (2015) no. 6, pp. 1120-1125

[70] E. Cai; P. Ranjan; P. Pan; M. Wuebbens; D. Marculescu Efficient data-driven model learning for dynamical systems, ISMB 2016, Orlando, July 8-12, 2016 (2016)

[71] J. Hasenauer; N. Jagiella; S. Hross; F.J. Theis Data-driven modeling of biological multi-scale processes, J. Coupled Syst. Multiscale Dyn., Volume 3 (2015) no. 2, pp. 101-121 | DOI

[72] B. Chen; C. Zang Artificial immune pattern recognition for structure damage classification, Comput. Struct., Volume 87 (2013), pp. 1394-1407

[73] S.A. Hofmeyr; S. Forrest Architecture for an artificial immune system, Evol. Comput., Volume 8 (2000) no. 4, pp. 443-473

[74] J.E. Hunt; D.E. Cooke Learning using an artificial immune system, J. Netw. Comput. Appl., Volume 19 (1996) no. 2, pp. 189-212

[75] M. Anaya; D.A. Tibaduiza-Burgos; F. Pozo A bioinspired methodology based on an artificial immune system for damage detection in structural health monitoring, Shock Vib., Volume 2015 (2014)

[76] M. Anaya; D.A. Tibaduiza; F. Pozo Detection and classification of structural changes using artificial immune systems and fuzzy clustering, Int. J. Bio-Inspir. Comput., Volume 9 (2017) no. 1, pp. 35-52

[77] F.J.M. Guerra dos Santos Cavadas Structural Health Monitoring of Bridges: Physics-Based Assessment and Data-Driven Damage Identification, Universidade do Porto, 2016 (Ph. D. thesis)

[78] A.S. Kompalka; S. Reese; O.T. Bruhns Experimental investigation of damage evolution by data-driven stochastic subspace identification and iterative finite element model updating, Arch. Appl. Mech., Volume 77 (2007) no. 8, pp. 559-573

[79] A. Karpatne; G. Alturi; J.H. Faghmous; M. Steinbach; A. Banerjee; A. Ganguly; S. Shekhar; N. Samatova; V. Kumar Theory-guided data science: a new paradigm for scientific discovery from data, IEEE Trans. Knowl. Data Eng., Volume 29 (2017), pp. 2318-2331

[80] V.J. Amores; J.M. Benitez; F.J. Montáns Data-driven, structure-based hyperelastic manifolds: a macro-micro-macro approach | arXiv

[81] S. Yin; S.X. Ding; X. Xie; H. Luo A review on basic data-driven approaches for industrial process monitoring, IEEE Trans. Ind. Electron., Volume 61 (2014) no. 11, pp. 6418-6428

[82] F. Chinesta; E. Cueto; E. Abisset; J.L. Duval; F. El Khaldi Virtual, digital and hybrid twins. A new paradigm in data-based engineering and engineered data, Arch. Comput. Methods Eng. (2019) (in press) | DOI

[83] J. Wang; Q. Chang; G. Xiao; N. Wang; S. Li Data driven production modeling and simulation of complex automobile general assembly plant, Comput. Ind., Volume 62 (2011) no. 7, pp. 765-775

[84] P.P. Peralta-Yahya; F. Zhang; S.B. Del Cardayre; J.D. Keasling Microbial engineering for the production of advanced biofuels, Nature, Volume 488 (2012) no. 7411, p. 320

[85] P. Kadlec; B. Gabrys; S. Strandt Data-driven soft sensors in the process industry, Comput. Chem. Eng., Volume 33 (2009) no. 4, pp. 795-814

[86] S. Yin; S.X. Ding; A.H.A. Sari; H. Hao Data-driven monitoring for stochastic systems and its application on batch process, Int. J. Syst. Sci., Volume 44 (2013) no. 7, pp. 1366-1376

[87] S.A. Vaghefi; M.A. Jafari; J. Zhu; J. Brouwer; Y. Lu A hybrid physics-based and data driven approach to optimal control of building cooling/heating systems, IEEE Trans. Autom. Sci. Eng., Volume 13 (2014) no. 2, pp. 600-610

[88] K.R. Holdaway Harness Oil and Gas Big Data with Analytics: Optimize Exploration and Production with Data-Driven Models, Wiley, New Jersey, 2014

[89] S. Esmaili; S.D. Mohaghegh Full field reservoir modeling of shale assets using advanced data-driven analytics, Geosci. Front., Volume 7 (2016) no. 1, pp. 11-20

[90] Y. Zhang; J. He; C. Yang; J. Xie; R. Fitzmorris; X-H. Wen A physics-based data-driven model for history matching, prediction, and characterization of unconventional reservoirs, Soc. Pet. Eng. J., Volume 23 (2018) no. 4

[91] Z. Guo; A.C. Reynolds; H. Zhao A physics-based data-driven model for history matching, prediction, and characterization of waterflooding performance, Soc. Pet. Eng. J. (2018) | DOI

[92] T. Kaneko; R. Wada; M. Ozaki; T. Inoue Combining physics-based and data-driven models for estimation of WOB during ultra-deep ocean drilling, Madrid, Spain (2018) (Paper OMAE2018-78229, V008T11A007) | DOI

[93] I. Song; I.H. Cho; R.W. Wong An advanced statistical approach to data-driven earthquake engineering, J. Earthq. Eng. (2018) (in press) | DOI

[94] K. Duraisamy; Z.J. Zhang; A.P. Singh New approaches in turbulence and transition modeling using data-driven techniques, AIAA SciTech Forum AIAA2015-1284 (2015), pp. 1-14

[95] E.J. Parish; K. Duraisamy A paradigm for data-driven predictive modeling using field inversion and machine learning, J. Comput. Phys., Volume 305 (2016), pp. 758-774

[96] J. Tompson; K. Schlachter; P. Sprechmann; K. Perlin Accelerating fluid simulation with convolutional networks, 2017 | arXiv

[97] J. Ling; A. Ruiz; G. Lacaze; J. Oefelein Uncertainty and data-driven model advances for a jet-in-crossflow, J. Turbomach., Volume 139 (2016) no. 2

[98] K. Duraisamy; G. Laccarino; H. Xiao Turbulence modeling in the age of data, Annu. Rev. Fluid Mech., Volume 51 (2019), pp. 357-377 | DOI

[99] S. Klus; F. Nüske; P. Koltai; H. Wu; I. Kevrekidis; C. Schötte; F. Noé Data-driven model reduction and transfer operator approximation, J. Nonlinear Sci., Volume 28 (2018) no. 3, pp. 985-1010

[100] V. Beltran; S. Le Clainche; J.M. Vega Temporal extrapolation of quasi-periodic solutions via DMD-like methods, AIAA Aviation Forum (AIAA 2018-3092) (2018) | DOI

[101] N. Demo; M. Tezzele; G. Gustin; G. Lavini; G. Rozza Shape optimization by means of proper orthogonal decomposition and dynamic mode decomposition, 2018 | arXiv

[102] B. Moya; D. González; I. Alfaro; F. Chinesta; E. Cueto Learning slosh dynamics by means of data, Comput. Mech., Volume 64 (2019), pp. 511-523

[103] K.H. Lee; M.G. Choi; Q. Hong; J. Lee Group behavior from video: a data-driven approach to crowd simulation, SCA '07: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 2007, pp. 109-118

[104] P. Charalambous; Y. Chrysanthou The PAG crowd: a graph based approach for efficient data-driven crowd simulation, Comput. Graph. Forum, Volume 33 (2014) no. 8, pp. 95-108

[105] J. Zhang; H. Liu; Y. Li; X. Qin; S. Wang Video-driven group behavior simulation based on social comparison theory, Physica A Statist. Mech. Appl., Volume 512 (2018), pp. 620-634

[106] V. Marmarelis; G. Mitsis Data-Driven Modeling for Diabetes, Lecture Notes in Bioengineering, Springer-Verlag, Berlin, 2014

[107] O. Zettinig; T. Mansi; D. Neumann; B. Georgescu; S. Rapaka; P. Seegerer; E. Kayvanpour; F. Sedaghat-Hamedani; A. Amr; J. Haas; H. Steen Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals, Med. Image Anal., Volume 18 (2014) no. 8, pp. 1361-1376

[108] J.R. Jimenez-Alanaiz; V. Medina-Banuelos; O. Yanez-Suarez Data-driven brain MRI segmentation supported on edge confidence and a priori tissue information, IEEE Trans. Med. Imaging, Volume 25 (2006) no. 1, pp. 74-83

[109] J.P. Kassirer Diagnostic reasoning, Ann. Intern. Med., Volume 110 (1989) no. 11, pp. 893-900

[110] X.H. Wang; B. Zheng; W.F. Good; J.L. King; Y.H. Chang Computer-assisted diagnosis of breast cancer using a data-driven Bayesian belief network, Int. J. Med. Inform., Volume 54 (1999) no. 2, pp. 115-126

[111] Y. Xing; W. Wang; Z. Zhao Combination data mining methods with new medical data to predicting outcome of coronary heart disease, Gyeongju, South Korea, 21-23 Nov 2007 (2007) | DOI

[112] J. Luo; M. Wu; D. Gopukumar; Y. Zhao Big data application in biomedical research and health care: a literature review, Biomed. Inform. Insights, Volume 8 (2016), pp. 1-10

[113] K.H. Bleicher; H.J. Böhm; K. Müller; A.I. Alanine Hit and lead generation: beyond high-throughput screening, Nat. Rev. Drug Discov., Volume 2 (2003), pp. 369-378

[114] Y. Jing; Y. Bian; Z. Hu; L. Wang; X-Q.S. Xie Deep learning for drug design: an artificial intelligence paradigm for drug discovery in the big data era, AAPS J., Volume 20 (2018), p. 58

[115] J. Dews Strategic trends in the drug industry, Drug Discov. Today, Volume 8 (2003), pp. 411-420

[116] N. Kumar; B.S. Hendriks; K.A. Janes; D. de Graaf; D.A. Lauffenburger Applying computational modeling to drug discovery and development, Drug Discov. Today, Volume 11 (2006) no. 17–18, pp. 806-811

[117] H.P. Fisher; S. Heyse From targets to leads: the importance of advanced data analysis for decision support in drug discovery, Curr. Opin. Drug Discov. Devel., Volume 8 (2005) no. 3, pp. 334-346

[118] D.B. Searls Data integration: challenges for drug discovery, Nat. Rev. Drug Discov., Volume 4 (2005), pp. 45-58

[119] T. Wunberg; M. Hendrix; A. Hillisch; M. Lobell; H. Meier; C. Schmeck; H. Wild; B. Hinzen Improving the hit-to-lead process: data-driven assessment of drug-like and lead-like screening hits, Drug Discov. Today, Volume 11 (2006), pp. 175-180

[120] C. Partl; A. Lex; M. Streit; H. Strobelt; A.-M. Wassermann; H. Pfister; D. Schmalstieg ConTour: data-driven exploration of multi-relational datasets for drug discovery, IEEE Trans. Vis. Comput. Graph., Volume 20 (2014) no. 12, pp. 1883-1892

[121] T.J. Howe; G. Mahieu; P. Marichal; T. Tabruyn; P. Vugts Data reduction and representation in drug discovery, Drug Discov. Today, Volume 12 (2007) no. 1–2, pp. 45-53

[122] R. Gómez-Bombarelli; J.N. Wei; D. Duvenaud; J.M. Hernández-Lobato; B. Sánchez-Lengeling; D. Sheberla; J. Aguilera-Iparraguirre; T.D. Hirzel; R.P. Adams; A. Aspuru-Guzik Automatic chemical design using a data-driven continuous representation of molecules, ACS Cent. Sci., Volume 4 (2018) no. 2, pp. 268-276

[123] M.J. Kusner; B. Paige; J.M. Hernández-Lobato Grammar variational autoencoder, 2017 | arXiv

[124] W. Jin; R. Barzilay; T. Jaakkola Junction tree variational autoencoder for molecular graph generation, 2018 | arXiv

[125] H. Dai; Y. Tian; B. Dai; S. Skiena; L. Song Syntax-directed variational autoencoder for structured data, 2018 | arXiv

[126] K. Popova; O. Isayev; A. Tropsha Deep reinforcement learning for de novo drug design, Sci. Adv., Volume 4 (2018) no. 7

[127] G.L. Guimaraes; B. Sánchez-Lengeling; P.L.C. Farias; A. Aspuru-Guzik; C. Outeiral; P.L.C. Farias; A. Aspuru-Guzik Objective-reinforced generative adversarial networks (ORGAN) for sequence generation models, 2017 | arXiv

[128] J. Nicas; J. Creswell Boeing's 737 Max: 1960s Design, 1990s Computing Power and Paper Manuals, 2019 (The New York Times, NY Edition, 9 Apr 2019, A1)

[129] J. Bicevskis; Z. Bicevska; G. Karnitis Executable data quality models, Proc. Comput. Sci., Volume 104 (2017), pp. 138-145

[130] M.S. Marev; E. Compatangelo; W. Vasconcelos Towards a Context-Dependent Numerical Data Quality Evaluation Framework, 2018 (Technical report) | arXiv

[131] R.Y. Wang; V.C. Storey; C.P. Firth A framework for analysis of data quality research, IEEE Trans. Knowl. Data Eng., Volume 7 (1995) no. 4, pp. 623-639

[132] J. Liu; J. Li; W. Li; J. Wu Rethinking big data: a review on the data quality and usage issues, ISPRS J. Photogramm. Remote Sens., Volume 115 (2016), pp. 134-142

[133] A. Zaveri; A. Rula; A. Maurino; R. Pietrobon; J. Lehman; S. Auer Quality assessment for linked data: a survey, Semant. Web, Volume 7 (2019) no. 1, pp. 63-93

[134] C. Batini; M. Scannapieco Data and Information Quality. Dimensions, Principles and Techniques, Springer Nature Switzerland AG, 2018

[135] I. Kirchen; D. Schütz; J. Folmer; B. Vogel-Heuser Metrics for the evaluation of data quality of signal data in industrial processes, INDIN, 24-26 July 2017 (2017) | DOI

[136] G. Pastorello; D. Agarwal; T. Samak; C. Poindexter; B. Faybishenko; D. Gunter; R. Hollowgrass; D. Papale; C. Trotta; A. Ribeca; E. Canfora Observational data patterns for time series data quality assessment, Proceedings of the IEEE 10th International Conference on eScience, vol. 1, IEEE Computer Society, 2014, pp. 271-277

[137] R. Gitzel Data quality in time series data. An experience report, Paris, France, 31 Aug 2016 (2016), pp. 41-49

[138] Y. Chen; F. Zhu; J. Lee Data quality evaluation and improvement for prognostic modeling using visual assessment based data partitioning method, Comput. Ind., Volume 64 (2013), pp. 214-225

[139] T.Y. Hou; K.C. Lam; P. Zhang; S. Zhang Solving Bayesian inverse problems from the perspective of deep generative networks, Comput. Mech., Volume 64 (2019), pp. 395-408

[140] M. Raissi; H. Babaee; G.E. Karniadakis Parametric Gaussian process regression for big data, Comput. Mech., Volume 64 (2019), pp. 409-416

[141] Y. Yang; P. Perdikaris Conditional deep surrogate models for stochastic, high dimensional, and multifidelity systems, Comput. Mech., Volume 64 (2019), pp. 417-434

[142] C. Soize; R. Ghanem Data-driven probability concentration and sampling on manifold, J. Comput. Phys., Volume 321 (2016), pp. 242-258

[143] C. Soize; C. Farhat Probabilistic learning form modeling and quantifying model-form uncertainties in nonlinear computational mechanics, Int. J. Numer. Methods Eng., Volume 117 (2019), pp. 819-843

[144] S. Fortunato; C.T. Bergstrom; K. Börner; J.A. Evans; D. Helbing; S. Milojevic; A.M. Petersen; F. Radicchi; R. Sinatra; B. Uzzi; A. Vespignani; L. Waltman; D. Wang; A-L. Barabasi Science of science, Science, Volume 359 (2018) no. 6379 | DOI

[145] A. Clauset; D.B. Larremere; R. Sinatra Data-driven predictions in the science of science, Science, Volume 355 (2017) no. 6324, pp. 477-480

Cité par Sources :

Commentaires - Politique