logo CRAS
Comptes Rendus. Mécanique
Short Paper
Digital Volume Correlation analyses to study deformation and damage mechanisms of teak in torsion
Comptes Rendus. Mécanique, Volume 350 (2022), pp. 85-98.

Wood is a material with anisotropic elastic properties at the macroscale. In the present work, a sample made of Beninise teak was subjected to in situ torsion. Digital Volume Correlation (DVC) analyses were run at the mesoscale to measure displacement fields. The corresponding strain fields were obtained at the same scale in addition to the gray level residuals at the voxel scale. The out-of-plane shear modulus could be calibrated at the macroscale and was in good agreement with earlier results of the coauthors (MCH and CAK). The ultimate shear strength was also assessed at the same scale. Last, damage was detected and quantified at the mesoscale thanks to strain fields and at the microscale via gray level residual fields.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmeca.107
Keywords: Crack, Digital Volume Correlation (DVC), In situ test, Tomography, Wood
Malo Valmalle 1; Montcho Crépin Hounlonon 2; Benjamin Smaniotto 1, 3; Clément A. Kouchadé 2; François Hild 1

1 ENS Paris-Saclay, DER Génie Mécanique, Gif-sur-Yvette, France
2 Université d’Abomey-Calavi (UAC), Faculté des Sciences et Techniques (FAST), Laboratoire de Physique du Rayonnement (LPR), Abomey-Calavi, Bénin
3 Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS–Laboratoire de Mécanique Paris-Saclay, Gif-sur-Yvette, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_G1_85_0,
     author = {Malo Valmalle and Montcho Cr\'epin Hounlonon and Benjamin Smaniotto and Cl\'ement A. Kouchad\'e and Fran\c{c}ois Hild},
     title = {Digital {Volume} {Correlation} analyses to study deformation and damage mechanisms of teak in torsion},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {85--98},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {350},
     year = {2022},
     doi = {10.5802/crmeca.107},
     language = {en},
}
TY  - JOUR
AU  - Malo Valmalle
AU  - Montcho Crépin Hounlonon
AU  - Benjamin Smaniotto
AU  - Clément A. Kouchadé
AU  - François Hild
TI  - Digital Volume Correlation analyses to study deformation and damage mechanisms of teak in torsion
JO  - Comptes Rendus. Mécanique
PY  - 2022
DA  - 2022///
SP  - 85
EP  - 98
VL  - 350
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmeca.107
DO  - 10.5802/crmeca.107
LA  - en
ID  - CRMECA_2022__350_G1_85_0
ER  - 
%0 Journal Article
%A Malo Valmalle
%A Montcho Crépin Hounlonon
%A Benjamin Smaniotto
%A Clément A. Kouchadé
%A François Hild
%T Digital Volume Correlation analyses to study deformation and damage mechanisms of teak in torsion
%J Comptes Rendus. Mécanique
%D 2022
%P 85-98
%V 350
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmeca.107
%R 10.5802/crmeca.107
%G en
%F CRMECA_2022__350_G1_85_0
Malo Valmalle; Montcho Crépin Hounlonon; Benjamin Smaniotto; Clément A. Kouchadé; François Hild. Digital Volume Correlation analyses to study deformation and damage mechanisms of teak in torsion. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 85-98. doi : 10.5802/crmeca.107. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.107/

[1] M. Hounlonon; C. Kouchadé; B. Kounouhewa Propriétés physiques et mécaniques du bois de teck de provenances tanzanienne et locale au Bénin, Bois et Forêts des Trop., Volume 331 (2017) no. 1, pp. 45-63 | DOI

[2] D. Louppe; A. Oteng-Amoako; M. Brink Tectona grandis L.f., PROTA, Wageningen, Netherlands, 2005

[3] NF B 51-003 Caractérisation des propriétés mécaniques du bois, AFNOR – Association française de normalisation, 1942

[4] A. D. Kokutse; K. Adjonou; K. Kokou; M. Gbeassor Problématique de la qualité du teck de provenance tanzanienne par rapport au teck local en plantation au Togo, Bois et Forêt des Trop., Volume 302 (2009), pp. 43-52 | DOI

[5] I. Miranda; V. Sousa; H. Pereira Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor, J. Wood Sci., Volume 57 (2011), pp. 171-178 | DOI

[6] P. Thulasidas; K. Bhat Mechanical properties and wood structure characteristics of 35-year old home-garden teak from wet and dry localities of Kerala, India in comparison with plantation teak, J. Indian Acad. Wood Sci., Volume 9 (2012), pp. 23-32 | DOI

[7] D. Rizanti; W. Darmawan; B. George; A. Merlin; S. Dumarcay; H. Chapuis; C. Gérardin; E. Gelhaye; P. Raharivelomanana; R. Sari; W. Syafii; R. Mohamed; P. Gerardin Comparison of teak wood properties according to forest management: short versus long rotation, Ann. For. Sci., Volume 75 (2018), 39 | DOI

[8] The Teak Genome, Compendium of Plant Genomes (Y. Ramasamy; E. Galeano; T. Win, eds.), Springer Nature, Cham, Switzerland, 2021 | DOI

[9] J. Prezelj; A. Nikonov; I. Emri Using sound in the very near field of vibrating plates for determination of their mechanical properties, Appl. Acoust., Volume 186 (2022), 108486 | DOI

[10] AFNOR – Association française de normalisation NF B 51-012, Bois – Essai de cisaillement, 2019

[11] M.-T. Gautherin Critère de contrainte limite du bois massif, Ph. D. Thesis, Université Pierre et Marie Curie (1980) (in French)

[12] P. Simon Approche multiéchelle du comportement mécanique du bois dans le plan transverse, Ph. D. Thesis, Institut National des Sciences Appliquées de Lyon (2009) (in French)

[13] R. Keller; C. Millier Use of density components in xylochronology, Ann. For. Sci., Volume 27 (1970) no. 2, pp. 157-196 | DOI

[14] J. Bodig; J. Goodman Prediction of elastic parameters for wood, Wood Sci., Volume 5 (1973) no. 4, pp. 249-264

[15] D. Guitard Mécanique du matériau bois et composites, Cepadues, Toulouse, France, 1987

[16] B. Zobel; J. Buijtenen Wood Variations, its Causes and Control, Springer Verlag, Berlin, Germany, 1989 | DOI

[17] M. C. Trouy; P. Triboulot Matériau bois – Structure et caractéristiques, C925, Techniques de l’ingénieur, Saint-Denis, France, 2001

[18] F. Forsberg; R. Mooser; M. Arnold; E. Hack; P. Wyss 3D micro-scale deformations of wood in bending: Synchrotron radiation μCT data analyzed with digital volume correlation, J. Struct. Biol., Volume 164 (2008), pp. 255-262 | DOI

[19] F. Forsberg; M. Sjödahl; R. Mooser; E. Hack; P. Wyss Full three-dimensional strain measurements on wood exposed to three-point bending: Analysis by use of digital volume correlation applied to synchrotron radiation micro-computed tomography image data, Strain, Volume 46 (2010) no. 1, pp. 47-60 | DOI

[20] H. Tran; P. Doumalin; C. Delisée; J. Dupré; J. Malvestio; A. Germaneau 3D mechanical analysis of low-density wood-based fiberboards by X-ray microcomputed tomography and Digital Volume Correlation, J. Mater. Sci., Volume 48 (2012), pp. 3198-3212 | DOI

[21] M. Sutton Computer vision-based, noncontacting deformation measurements in mechanics: A generational transformation, Appl. Mech. Rev., Volume 65 (2013) no. AMR-13-1009, 050802 | DOI

[22] B. Bay; T. Smith; D. Fyhrie; M. Saad Digital volume correlation: three-dimensional strain mapping using X-ray tomography, Exp. Mech., Volume 39 (1999), pp. 217-226 | DOI

[23] B. Bay Methods and applications of digital volume correlation, J. Strain Anal. Eng. Des., Volume 43 (2008), pp. 745-760 | DOI

[24] S. Roux; F. Hild; P. Viot; D. Bernard Three dimensional image correlation from X-ray computed tomography of solid foam, Compos. Part A Appl. Sci. Manuf., Volume 39 (2008) no. 8, pp. 1253-1265 | DOI

[25] F. Hild; A. Bouterf; L. Chamoin; F. Mathieu; J. Neggers; F. Pled; Z. Tomičević; S. Roux Toward 4D Mechanical Correlation, Adv. Model. Simul. Eng. Sci., Volume 3 (2016) no. 1, pp. 1-26 | DOI

[26] C. El Hachem; K. Abahri; R. Bennacer Original experimental and numerical approach for prediction of the microscopic hygro-mechanical behavior of spruce wood, Constr. Build. Mater., Volume 203 (2019), pp. 258-266 | DOI

[27] J. Carlsson; M. Heldin; P. Isaksson; U. Wiklund Investigating tool engagement in groundwood pulping: finite element modelling and in-situ observations at the microscale, Holzforschung, Volume 74 (2020) no. 5, pp. 477-487 | DOI

[28] E. Maire; P. J. Withers Quantitative X-ray tomography, Int. Mater. Rev., Volume 59 (2014) no. 1, pp. 1-43 | DOI

[29] J. Buffière; E. Maire; J. Adrien; J. Masse; E. Boller In situ experiments with X ray tomography: an attractive tool for experimental mechanics, Exp. Mech., Volume 50 (2010) no. 3, pp. 289-305 | DOI

[30] E. Schwab; P. Polaczek Bestimmung der Schubmoduln von Holz durch statische Torsionsversuche Beitrag zur Neufassung DIN 52190, Holz Roh Werkst., Volume 35 (1977), pp. 23-27 | DOI

[31] J. Poynting XXXIX. Radiation pressure, Lond. Edinb. Dublin Philos. Mag. J. Sci., Volume 9 (1905) no. 52, pp. 393-406 | DOI

[32] L. Feldkamp; L. Davis; J. Kress Practical cone beam algorithm, J. Opt. Soc. Am., Volume A1 (1984), pp. 612-619 | DOI

[33] P. Auger; T. Lavigne; B. Smaniotto; M. Spagnuolo; F. dell’Isola; F. Hild Poynting effects in pantographic metamaterial captured via multiscale DVC, J. Strain Anal. Eng. Des., Volume 56 (2021) no. 7, pp. 462-477 | DOI

[34] H. Leclerc; J. Neggers; F. Mathieu; F. Hild; S. Roux Correli 3.0. IDDN.FR.001.520008.000.S.P.2015.000.31500, Agence pour la Protection des Programmes, Paris, France, 2015

[35] F. Hild; A. Fanget; J. Adrien; E. Maire; S. Roux Three dimensional analysis of a tensile test on a propellant with digital volume correlation, Arch. Mech., Volume 63 (2011) no. 5–6, pp. 1-20 | Zbl

[36] F. Hild; A. Bouterf; S. Roux Damage measurements via DIC, Int. J. Fract., Volume 191 (2015) no. 1-2, pp. 77-105 | DOI

[37] W. C. Young; R. G. Budynas Roark’s Formulas for Stress and Strain, McGraw-Hill, New York, USA, 2001, 401 pages (Ch. 10)

[38] B. Hassel; C. Modén; P. Berard; L. Berglund Single cube apparatus - Shear properties determination ans shear strain variation in natural density gradient materials, ICCM-17 17th International Conference on Composite Materials (2009) http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-152372

[39] A. Ylinen; P. Jumppanen Theory of the shrinkage of wood, Wood Sci. Technol., Volume 1 (1967), pp. 241-252 | DOI

[40] J. Dumail Caractéristiques physiques et mécaniques du bois juvénile de pin maritime (Pinus pinaster), Ph. D. Thesis, Université Bordeaux 1 (1995) (in French)

[41] F. Farruggia Détermination du comportement élastique d’un ensemble de fibres de bois à partir de son organisation cellulaire et d’essais mécaniques sous microscope, Ph. D. Thesis, ENGREF Nancy (1998) (in French)

Cited by Sources: