The homogenization of microstructured interfaces requires solving specific problems posed on semi-infinite bands. To tackle these problems with existing FFT-based algorithms, a reformulation of these band problems into fully periodic cell problems, posed on bounded domains, is established. This is performed thanks to a Dirichlet-to-Neumann operator and a decomposition of the solution involving a boundary corrector, in a Fourier framework. A fixed-point algorithm and an example choice of corrector are proposed. Comparisons with other computational methods support this proposition.
Révisé le :
Accepté le :
Publié le :
Rémi Cornaggia 1 ; Marie Touboul 2 ; Cédric Bellis 3
@article{CRMECA_2022__350_G2_297_0, author = {R\'emi Cornaggia and Marie Touboul and C\'edric Bellis}, title = {FFT-based computation of homogenized interface parameters}, journal = {Comptes Rendus. M\'ecanique}, pages = {297--307}, publisher = {Acad\'emie des sciences, Paris}, volume = {350}, year = {2022}, doi = {10.5802/crmeca.119}, language = {en}, }
TY - JOUR AU - Rémi Cornaggia AU - Marie Touboul AU - Cédric Bellis TI - FFT-based computation of homogenized interface parameters JO - Comptes Rendus. Mécanique PY - 2022 SP - 297 EP - 307 VL - 350 PB - Académie des sciences, Paris DO - 10.5802/crmeca.119 LA - en ID - CRMECA_2022__350_G2_297_0 ER -
Rémi Cornaggia; Marie Touboul; Cédric Bellis. FFT-based computation of homogenized interface parameters. Comptes Rendus. Mécanique, Volume 350 (2022), pp. 297-307. doi : 10.5802/crmeca.119. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.119/
[1] Effective dynamic properties of a row of elastic inclusions: The case of scalar shear waves, J. Elast., Volume 128 (2017) no. 2, pp. 265-289 | DOI | MR | Zbl
[2] Acoustic and elastic wave propagation in microstructured media with interfaces: homogenization, simulation and optimization, Ph. D. Thesis, Aix-Marseille Université (2021) https://tel.archives-ouvertes.fr/tel-03411353/
[3] Tuning effective dynamical properties of periodic media by FFT-accelerated topological optimization, Int. J. Numer. Methods Eng., Volume 121 (2020) no. 14, pp. 3178-3205 | DOI | MR
[4] Dirichlet-to-Neumann maps for unbounded wave guides, J. Comput. Phys., Volume 143 (1998) no. 1, pp. 200-223 | DOI | MR | Zbl
[5] An alternative to Dirichlet-to-Neumann maps for waveguides, C. R. Mat., Volume 349 (2011) no. 17–18, pp. 1005-1009 | MR | Zbl
[6] A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Meth. Appl. Mech. Eng., Volume 157 (1998) no. 1, pp. 69-94 | DOI | MR | Zbl
[7] A review of nonlinear FFT-based computational homogenization methods, Acta Mech., Volume 232 (2021) no. 6, pp. 2051-2100 | DOI | MR | Zbl
[8] A modified FFT-based solver for the mechanical simulation of heterogeneous materials with Dirichlet boundary conditions, C. R. Méc., Volume 348 (2020) no. 8–9, pp. 693-704
[9] Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials, Int. J. Numer. Methods Eng., Volume 97 (2014) no. 13, pp. 960-985 | DOI | MR | Zbl
[10] New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3–4, pp. 251-265 | MR | Zbl
[11] Effective boundary condition for the reflection of shear waves at the periodic rough boundary of an elastic body, Vietnam J. Mech., Volume 40 (2018) no. 4, pp. 303-323 | DOI
[12] Wave propagation in periodic media: mathematical analysis and numerical simulation, 2019 https://hal.archives-ouvertes.fr/tel-02394976 Habilitation à diriger des recherches, Université Paris Sud (Paris 11)
Cité par Sources :
Commentaires - Politique