Comptes Rendus
Fifty years of progress in wildland fire modelling: from empirical to fully physical CFD models
Comptes Rendus. Mécanique, Online first (2022), pp. 1-9.

The aim of this short review is to present the progress made in wildland fire modelling during the last 50 years and the intellectual track followed by wildland fires models, from fully empirical models in the 60s, to semi-empirical ones in the 70s, to fully physical models at the end of the 90s. During the last period, the large diffusion of HPC methods substantially contributed to the development of multiphase formulations applied to wildland fire modelling. Many studies have particularly focused on the effects of various parameters (vegetation, topography, atmosphere) affecting the behaviour of a fire front propagating through a forest fuel layer.

Online First:
DOI: 10.5802/crmeca.133
Keywords: Wildland fire modelling, Multiphase physical model, Multiphase reactive flow, Turbulent combustion, Wildfire modelling, Radiation heat transfer, Sparce porous media

Dominique Morvan 1; Gilbert Accary 2; Sofiane Meradji 3; Nicolas Frangieh 4

1 Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
2 Scientific Research Centre in Engineering, Lebanese University, Museum Square, 1106 Beirut, Lebanon
3 IMATH Laboratory, EA 2134, Toulon University, 83160 Toulon, France
4 UMR CNRS SPE 6134, Université de Corse, 20250 Corte, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
     author = {Dominique Morvan and Gilbert Accary and Sofiane Meradji and Nicolas Frangieh},
     title = {Fifty years of progress in wildland fire modelling: from empirical to fully physical {CFD} models},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crmeca.133},
     language = {en},
     note = {Online first},
AU  - Dominique Morvan
AU  - Gilbert Accary
AU  - Sofiane Meradji
AU  - Nicolas Frangieh
TI  - Fifty years of progress in wildland fire modelling: from empirical to fully physical CFD models
JO  - Comptes Rendus. Mécanique
PY  - 2022
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.133
LA  - en
ID  - CRMECA_2022__350_S1_A8_0
ER  - 
%0 Journal Article
%A Dominique Morvan
%A Gilbert Accary
%A Sofiane Meradji
%A Nicolas Frangieh
%T Fifty years of progress in wildland fire modelling: from empirical to fully physical CFD models
%J Comptes Rendus. Mécanique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.133
%G en
%F CRMECA_2022__350_S1_A8_0
Dominique Morvan; Gilbert Accary; Sofiane Meradji; Nicolas Frangieh. Fifty years of progress in wildland fire modelling: from empirical to fully physical CFD models. Comptes Rendus. Mécanique, Online first (2022), pp. 1-9. doi : 10.5802/crmeca.133.

[1] A. L. Sullivan Wildland surface fire spread modelling 1990–2007. 1. Physical and quasi-physical models, Int. J. Wildland Fire, Volume 18 (2009), pp. 349-368 | DOI

[2] A. L. Sullivan Wildland surface fire spread modelling 1990–2007. 2. Empirical and quasi-empirical models, Int. J. Wildland Fire, Volume 18 (2009), pp. 369-386 | DOI

[3] A. L. Sullivan Wildland surface fire spread modelling 1990–2007. 3. Simulation and mathematical analogue models, Int. J. Wildland Fire, Volume 18 (2009), pp. 387-403 | DOI

[4] D. Morvan Physical phenomena and length scales governing the behaviour of wildfires: a case for physical modelling, Fire Technol., Volume 47 (2011), pp. 437-460 | DOI

[5] A. G. McArthur Weather and Grassland Fire Behaviour, Forest Research Institute, Forestry and Timber Bureau, ACT, Australia, 1966

[6] W. R. Anderson; M. G. Cruz; P. M. Fernandes; L. McCaw; J. A. Vega; R. A. Bradstock; L. Fogarty; J. Gould; G. McCarthy; J. B. Marsden-Smedley; G. Mattingley; H. G. Pearce; B. W. van Wilgen A generic, empirical-based model for predicting rate of fire spread in shrublands, Int. J. Wildland Fire, Volume 24 (2015) no. 4, pp. 443-460 | DOI

[7] F. A. Williams Urban and wildland fire phenomenology, Progr. Energy Combust. Sci., Volume 8 (1982) no. 4, pp. 317-354 | DOI

[8] D. Morvan Wildfires modelling: short overview, challenges and perspectives, J. Combust. Soc. Jpn., Volume 61 (2019) no. 196, pp. 120-125

[9] J. K Hiers; J. J. O’Brien; J. M. Varner; B. W. Butler; M. Dickinson; J. Furman; M. Gallagher; D. Godwin; S. L. Goodrick; S. M. Hood Prescribed fire: science: the case for a refined research agenda, Fire Ecol., Volume 16 (2020) no. 1, pp. 1-15 | DOI

[10] W. L. Fons Analysis of fire spread in light forest fuels, J. Agric. Res., Volume 72 (1946) no. 3, pp. 93-121

[11] H. Emmons Fire in the forest, Fire Res. Abstr. Rev., Volume 5 (1964), pp. 163-178

[12] H. E. Anderson; R. C. Rothermel Influence of moisture and wind upon the characteristics of free-burning fires, Symp. Int. Combust., Volume 10 (1965) no. 1, pp. 1009-1019 | DOI

[13] W. H. Frandsen Fire spread through porous fuels from the conservation energy, Combust. Flame, Volume 16 (1971), pp. 9-16 | DOI

[14] R. C. Rothermel A mathematical model for predicting fire spread in wildland fuels (1972) no. Research paper INT6115 (Technical report)

[15] M. A. Finney FARSITE: fire area simulator, model development and evaluation, 2004 (Research Paper RMRS-RP-4 Revised. Ogden, UT: US Department of Agriculture, Forest Service, Rocky Mountain Research Station)

[16] M. A. Finney; J. D. Cohen; J. M. Forthofer; S. S. McAllister; M. J. Gollner; D. J. Gorham; K. Saito; N. K. Akafuah; B. A. Adam; J. D. English Role of buoyant flame dynamics in wildfire spread, Proc. Natl. Acad. Sci. USA, Volume 112 (2015) no. 32, pp. 9833-9838 | DOI

[17] P. H. Hanson; M. M. Bradley; J. E. Bossert; R. R. Linn; L. W. Younker The potential and promise of physics-based wildfire simulation, Env. Sci. Policy, Volume 3 (2000), pp. 161-172 | DOI

[18] T. L. Clark; M. A. Jenkins; J. L. Cohen; D. R. Packham A coupled atmosphere-fire model: convective feedback on fire-line dynamics, J. Appl. Meteorol. Clim., Volume 35 (1996) no. 6, pp. 875-901 | DOI

[19] J. B. Filippi; F. Bosseur; X. Pialat; P. A. Santoni; S. Strada; C. Mari Simulation of coupled fire/atmosphere interaction with the MesoNH-ForeFire models, J. Combust., Volume 2011 (2011), 540390

[20] J. Mandel; J. D. Beezley; A. K. Kochanski Coupled atmosphere-wildland fire modeling with WRF-Fire version 3.3, Geosci. Model Dev., Volume 4 (2011), pp. 591-610

[21] J. H. Balbi; F. Morandini; X. Silvani; J. B. Filippi; F. Rinieri A physical model for wildland fires, Combust. Flame, Volume 156 (2009) no. 12, pp. 2217-2230 | DOI

[22] J. H. Balbi; F. J. Chatelon; D. Morvan; J. L. Rossi; T. Marcelli; F. Morandini A convective–radiative propagation model for wildland fires, Int. J. Wildland Fires, Volume 29 (2020) no. 8, pp. 723-738 | DOI

[23] M. T. Kiefer; W. E. Heilman; S. Zhong; J. J. Charney; X. Brian; N. S. Skowronski; J. L. Hom; K. L. Clark; M. Patterson; M. R. Gallagher Multiscale simulation of a prescribed fire event in the New Jersey Pine Barrens using ARPS-CANOPY, J. Appl. Meteorol. Clim., Volume 53 (2014) no. 4, pp. 793-812 | DOI

[24] N. P. Cheney; J. S. Gould; W. R. Catchpole The influence of fuel, weather and fire shape variables on fire spread in grasslands, Int. J. Wildland Fire, Volume 3 (1993), pp. 31-44 | DOI

[25] R. R. Linn A transport model for the prediction of wildfire behaviour, Ph. D. Thesis, University of New Mexico LANL (1997) | DOI

[26] D. Morvan; J. L. Dupuy; B. Porterie; M. Larini Multiphase formulation applied to the modeling of fire spread through a forest fuel bed, Proc. Combust. Inst., Volume 28 (2000) no. 2, pp. 2803-2809 | DOI

[27] W. Mell; M. A. Jenkins; J. Gould; Ph. Cheney A physics-based approach to modelling grassland fires, Int. J. Wildland Fire, Volume 16 (2007) no. 1, pp. 1-22 | DOI

[28] X. Zhou; S. Mahalingam; D. Weise Experimental study and large eddy simulation of effect of terrain slope on marginal burning in shrub fuel beds, Proc. Combust. Inst., Volume 31 (2007) no. 2, pp. 2547-2555 | DOI

[29] R. H. Shaw; U. Schumann Large-eddy simulation of turbulent flow above and within a forest, Bound. Layer Meteorol., Volume 61 (1992), pp. 47-64 | DOI

[30] J. Finnigan Turbulence in plant canopies, Annu. Rev. Fluid Mech., Volume 32 (2000), pp. 19-71 | DOI | Zbl

[31] A. M. Grishin Mathematical Modelling of Forest Fires and New Methods of Fighting Them (F. Albini, ed.), Publishing House of the Tomsk State University, Tomsk, Russia, 1997

[32] D. Morvan; S. Meradji; G. Accary Wildfire behaviour study in a Mediterranean pine stand using a physically based model, Combust. Sci. Technol., Volume 180 (2007) no. 2, pp. 230-248 | DOI

[33] D. Morvan Numerical study of the behaviour of a surface fire propagating through a fuel break built in a Mediterranean shrub layer, Fire Saf. J., Volume 71 (2015), pp. 34-48 | DOI

[34] N. Frangieh; G. Accary; D. Morvan; S. Meradji; O. Bessonov Wildfires front dynamics: 3D structures and intensity at small and large scales, Combust. Flame, Volume 211 (2020), pp. 54-67 | DOI

[35] W. Mell; A. Maranghides; R. McDermott; S. L. Manzello Numerical simulation and experiments of burning douglas fir trees, Combust. Flame, Volume 156 (2009), pp. 2023-2041 | DOI

[36] D. Morvan; N. Frangieh Wildland fires behaviour: wind effect versus Byram’s convective number and consequences upon the regime of propagation, Int. J. Wildland Fire, Volume 27 (2018) no. 9, pp. 636-641 | DOI

[37] D. Morvan Validation of wildfire spread models, Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires (S. Manzello, ed.), Springer, Cham, 2019 | DOI

[38] D. Morvan Wind effects, unsteady behaviours and regimes of propagation of surface fires in open field, Combust. Sci. Technol., Volume 186 (2014) no. 7, pp. 869-888 | DOI

[39] R. R. Linn; J. M. Canfield; P. Cunningham; C. Edminster; J. L. Dupuy; F. Pimont Using periodic line fires to gain a new perspective on multi-dimensional aspects of forward fire spread, Agric. For. Meteorol., Volume 157 (2012), pp. 60-76 | DOI

Cited by Sources:

Comments - Policy