Comptes Rendus
Incompressible flows and the Boussinesq approximation: 50 years of CFD
Comptes Rendus. Mécanique, Online first (2022), pp. 1-22.

We offer a synthetic exposition on the state of the art for Computational Fluid Dynamics (CFD) relevant to the Navier–Stokes equations with the Boussinesq approximation, smoothly blending a history of the field with an accessible exposition of the underlying mathematical rationale, supporting theorems and a survey of the landmark results on the subject. Attention is paid to those efforts which have opened up new paradigms in modern CFD, the techniques that have emerged as leading candidates as well as their diverse reverberations in producing advancements in our understanding of thermal buoyancy convection (especially Rayleigh–Bénard convection and the so-called Hadley Flow) in both laminar and turbulent conditions.

Received:
Revised:
Accepted:
Online First:
DOI: 10.5802/crmeca.134
Keywords: CFD, Incompressible flow, Thermal convection, Boussinesq approximation, Primitive-variables methods, Vorticity methods

Marcello Lappa 1

1 Department of Mechanical and Aerospace Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2022__350_S1_A6_0,
     author = {Marcello Lappa},
     title = {Incompressible flows and the {Boussinesq} approximation: 50 years of {CFD}},
     journal = {Comptes Rendus. M\'ecanique},
     publisher = {Acad\'emie des sciences, Paris},
     year = {2022},
     doi = {10.5802/crmeca.134},
     language = {en},
     note = {Online first},
}
TY  - JOUR
AU  - Marcello Lappa
TI  - Incompressible flows and the Boussinesq approximation: 50 years of CFD
JO  - Comptes Rendus. Mécanique
PY  - 2022
PB  - Académie des sciences, Paris
N1  - Online first
DO  - 10.5802/crmeca.134
LA  - en
ID  - CRMECA_2022__350_S1_A6_0
ER  - 
%0 Journal Article
%A Marcello Lappa
%T Incompressible flows and the Boussinesq approximation: 50 years of CFD
%J Comptes Rendus. Mécanique
%D 2022
%I Académie des sciences, Paris
%Z Online first
%R 10.5802/crmeca.134
%G en
%F CRMECA_2022__350_S1_A6_0
Marcello Lappa. Incompressible flows and the Boussinesq approximation: 50 years of CFD. Comptes Rendus. Mécanique, Online first (2022), pp. 1-22. doi : 10.5802/crmeca.134.

[1] A. Oberbeck Ueber die Wärmeleitung der Flüssigkeiten bei Berücksichtigung der Strömungen infolge von Temperaturdifferenzen, Ann. Phys. Chem., Volume 7 (1879), pp. 271-292 | DOI | Zbl

[2] J. Boussinesq Théorie analytique de la chaleur, mise en harmonie avec la thermodynamique et avec la théorie mécanique de la lumière, 2, Gauthier-Villars, Paris, 1903, pp. 1901-1903

[3] S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability, Clarendon Press, Oxford, 1961 (Republished by Dover publications, New York, 1981)

[4] J. M. Mihaljan A rigorous exposition of the Boussinesq approximations applicable to a thin layer of fluid, Astrophys. J., Volume 136 (1962), pp. 1126-1133 | DOI | MR

[5] D. Gray; A. Giorgini The validity of the Boussinesq approximation for liquids and gases, Int. J. Heat Mass Transf., Volume 19 (1976) no. 5, pp. 545-551 | DOI | Zbl

[6] L. Mahrt On the shallow motion approximations, J. Atmos. Sci., Volume 43 (1986), pp. 1036-1044 | DOI

[7] R. Kh. Zeytounian Joseph Boussinesq and his approximation: a contemporary view, C. R. Méc., Volume 331 (2003) no. 8, pp. 575-586 | DOI | Zbl

[8] M. Lappa On the nature of fluid-dynamics, Chapter 1, Understanding the Nature of Science (Lindholm Patrick, ed.) (Series: Science, Evolution and Creationism), Nova Science Publishers Inc., New York, 2019, pp. 1-64 https://novapublishers.com/shop/understanding-the-nature-of-science/ (BISAC: SCI034000, ISBN: 978-1-53616-016-1)

[9] M. Lappa Thermal Convection: Patterns, Evolution and Stability, John Wiley & Sons, Ltd, Chichester, England, 2009 | DOI

[10] M. Lappa Rotating Thermal Flows in Natural and Industrial Processes, John Wiley & Sons, Ltd, Chichester, England, 2012 | DOI

[11] S. Gauthier A spectral collocation method for two dimensional compressible convection, J. Comput. Phys., Volume 75 (1988) no. 1, pp. 217-235 | DOI | Zbl

[12] R. C. Martineau; R. A. Berry; A. Esteve; K. D. Hamman; D. A. Knoll; R. Park; W. Taitano Comparison of natural convection flows under VHTR type conditions modeled by both the conservation and incompressible forms of the Navier–Stokes equations, Nucl. Eng. Des., Volume 240 (2010), pp. 1371-1385 | DOI

[13] B. Gebhart Effects of viscous dissipation in natural convection, J. Fluid Mech., Volume 14 (1962), pp. 225-232 | DOI | MR | Zbl

[14] M. Lappa A mathematical and numerical framework for the analysis of compressible thermal convection in gases at very high temperatures, J. Comput. Phys., Volume 313 (2016), pp. 687-712 | DOI | MR | Zbl

[15] M. Lappa Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt, Part 1: Rayleigh–Bènard systems, C. R. Méc., Volume 335 (2007) no. 5–6, pp. 253-260 | DOI

[16] M. Lappa Some considerations about the symmetry and evolution of chaotic Rayleigh–Bénard convection: The flywheel mechanism and the “wind” of turbulence, C. R. Méc., Volume 339 (2011), pp. 563-572 | DOI

[17] M. Lappa Secondary and oscillatory gravitational instabilities in canonical three-dimensional models of crystal growth from the melt, Part 2: Lateral heating and the Hadley circulation, C. R. Méc., Volume 335 (2007) no. 5–6, pp. 261-268 | DOI

[18] P. M. Gresho Incompressible fluid dynamics: some fundamental formulation issues, Ann. Rev. Fluid Mech., Volume 23 (1991), pp. 413-453 | DOI | Zbl

[19] F. H. Harlow; J. E. Welch Numerical calculation of time-dependent viscous incompressible flow with free surface, Phys. Fluids, Volume 8 (1965), pp. 2182-2189 | DOI | MR | Zbl

[20] F. Harlow; J. Shannon; J. Welch The MAC method: a computing technique for solving viscous, incompressible, transient fluid-flow problems involving free surfaces (1965) no. LA-3425 (Technical report)

[21] J. R. Welch; F. H. Harlow; J. P. Shannon; B. J. Daly The MAC method (1965) no. LA-3425 (Technical report)

[22] A. J. Chorin Numerical solutions of the Navier–Stokes equations, Math. Comput., Volume 22 (1968), pp. 745-762 | DOI | MR

[23] R. Temam Une méthode d’approximation de la solution des équations de Navier–Stokes, Bull. Soc. Math. France, Volume 98 (1968), pp. 115-152 | DOI | Zbl

[24] R. Temam Sur l’approximation de la solution des èquations de Navier–Stokes par la mèthode des pas fractionnaires (I), Arch. Ration. Mech. Anal., Volume 33 (1969), pp. 377-385 | DOI | Zbl

[25] A. A. Amsden; F. H. Harlow The SMAC method: a numerical technique for calculating incompressible fluid flows (1970) no. LA-4370 (Technical report)

[26] P. Moin; J. Kim On the numerical solution of time-dependent viscous incompressible flow involving solid boundaries, J. Comput. Phys., Volume 35 (1980), pp. 381-392 | DOI | MR | Zbl

[27] J. Kim; P. Moin Application of a fractional-step method to incompressible Navier–Stokes equations, J. Comput. Phys., Volume 59 (1985), pp. 308-323 | DOI | MR | Zbl

[28] J. Van Kan A second-order accurate pressure-correction scheme for viscous incompressible flow, SIAM J. Sci. Comput., Volume 7 (1986), pp. 870-891 | DOI | MR | Zbl

[29] S. A. Orszag; M. Israeli; M. O. Deville Boundary conditions for incompressible flows, J. Sci. Comput., Volume 1 (1986) no. 1, pp. 75-111 | DOI | Zbl

[30] R. I. Issa Solution of the implicitly discretized fluid flow equations by operator splitting, J. Comput. Phys., Volume 62 (1986), pp. 40-65 | DOI | MR | Zbl

[31] J. B. Bell; P. Colella; H. M. Glaz A second order projection method for the incompressible Navier–Stokes equations, J. Comput. Phys., Volume 85 (1989) no. 2, pp. 257-283 | DOI | MR | Zbl

[32] G. E. Karniadakis; M. Israeli; S. A. Orszag High-order splitting methods for the incompressible Navier–Stokes equations, J. Comput. Phys., Volume 97 (1991), pp. 414-443 | DOI | MR | Zbl

[33] R. Temam Remark on the pressure boundary condition for the projection method, Theor. Comput. Fluid Dyn., Volume 3 (1991), pp. 181-184 | DOI | Zbl

[34] J. Shen On error estimates of projection methods for Navier–Stokes equations: first-order schemes, SIAM J. Numer. Anal., Volume 29 (1992) no. 1, pp. 57-77 | DOI | MR | Zbl

[35] R. Rannacher On Chorin’s Projection Method for the Incompressible Navier–Stokes Equations, Lectures Notes in Mathematics, 1530, Springer, Berlin, 1992, pp. 167-183

[36] L. Quartapelle International Series of Numerical Mathematics, 113, Birkäuser, Berlin, 1993 (ISBN 978-3764329358)

[37] J. B. Perot An analysis of the fractional step method, J. Comput. Phys., Volume 108 (1993), pp. 51-99 | DOI | MR | Zbl

[38] W. E; J.-G. Liu Projection method I: Convergence and numerical boundary layers, SIAM J. Numer. Anal., Volume 32 (1995) no. 4, pp. 1017-1057 | DOI | MR

[39] J. Shen On error estimates of the projection methods for the Navier–Stokes equations: Second-order schemes, Math. Comput., Volume 65 (1996) no. 215, pp. 1039-1066 | DOI | MR | Zbl

[40] J.-L. Guermond Some practical implementations of projection methods for Navier–Stokes equations, Model. Math. Anal. Numer., Volume 30 (1996), pp. 637-667 | DOI

[41] M. Lappa Strategies for parallelizing the three-dimensional Navier–Stokes equations on the Cray T3E, Science and Supercomputing at CINECA (M. Voli, ed.), Volume 11, CINECA, Bologna, Italy, 1997, pp. 326-340 (ISBN-10: 88-86037-03-1)

[42] J.-L. Guermond; L. Quartapelle On stability and convergence of projection methods based on pressure Poisson equation, Int. J. Numer. Methods Fluids, Volume 26 (1998), pp. 1039-1053 | DOI | MR | Zbl

[43] J. C. Strikwerda; Y. S. Lee The accuracy of the fractional step method, SIAM J. Numer. Anal., Volume 37 (1999), pp. 37-47 | DOI | MR | Zbl

[44] S. Armfield; R. Street The Fractional-Step Method for the Navier–Stokes equations on staggered grids: the accuracy of three variations, J. Comput. Phys., Volume 153 (1999) no. 2, pp. 660-665 | DOI | Zbl

[45] M. Lappa; R. Savino Parallel solution of the three-dimensional Marangoni flow instabilities in liquid bridges, Int. J. Numer. Methods Fluids, Volume 31 (1999), pp. 911-925 | DOI | Zbl

[46] D. L. Brown; R. Cortez; M. L. Minion Accurate projecion methods for the incompressible Navier–Stokes equations, J. Comput. Phys., Volume 168 (2001) no. 2, pp. 464-499 | DOI

[47] M. J. Lee; B. D. Oh; Y. B. Kim Canonical fractional-step methods and consistent boundary conditions for the incompressible Navier–Stokes equations, J. Comput. Phys., Volume 168 (2001), pp. 73-100 | DOI | Zbl

[48] N. A. Petersson Stability of pressure boundary conditions for Stokes and Navier–Stokes equations, J. Comput. Phys., Volume 172 (2001), pp. 40-70 | DOI | MR | Zbl

[49] S. Armfield; R. Street An analysis and comparison of the time accuracy of fractional-step methods for the Navier–Stokes equations on staggered grids, Int. J. Numer. Methods Fluids, Volume 38 (2002) no. 3, pp. 255-282 | DOI | Zbl

[50] J.-L. Guermond; P. Minev; J. Shen An overview of projection methods for incompressible flows, Comput. Methods Appl. Mech. Eng., Volume 195 (2006), pp. 6011-6045 | DOI | MR | Zbl

[51] H. Helmholtz “Über Integrale der hydrodynamischen Gleichungen, welcher der Wirbelbewegungen entsprechen” (On integrals of the hydrodynamic equations which correspond to vortex motions), J. Reine Angew. Math., Volume 55 (1858), pp. 25-55 | MR

[52] O. A. Ladyzhenskaya The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York, NY, USA; London, UK, 1969

[53] P. M. Gresho; R. T. Sani On pressure boundary conditions for the incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids, Volume 7 (1987), pp. 1111-1145 | DOI | Zbl

[54] G. E. Karniadakis; M. Israeli; S. A. Orszag High-order splitting methods for the incompressible Navier–Stokes equations, J. Comput. Phys., Volume 97 (1991), pp. 414-443 | DOI | MR | Zbl

[55] S. Paolucci On the filtering of sound from the Navier–Stokes equations (1982) no. SAND 82-8251 (Technical report)

[56] A. Majda; J. Sethian The derivation and numerical solution of the equation for zero Mach number combustion, Combust. Sci. Technol., Volume 42 (1985) no. 3–4, pp. 185-205 | DOI

[57] S. Roller; C.-D. Munz A low Mach number scheme based on multi-scale asymptotics, Comput. Vis. Sci., Volume 3 (2000) no. 1/2, pp. 85-91 | DOI | Zbl

[58] B. Müller Low Mach number asymptotics of the Navier–Stokes equations, J. Eng. Math., Volume 34 (1998) no. 1-2, pp. 97-109 | DOI | MR | Zbl

[59] A. Beccantini; E. Studer; S. Gounand; J.-P. Magnaud; T. Kloczko; C. Corre; S. Kudriakov Numerical simulations of transient injection flow at low Mach number regime, Int. J. Numer. Methods Eng., Volume 76 (2008), pp. 662-696 | DOI | MR | Zbl

[60] S. Benteboula; G. Lauriat Numerical simulations of anisothermal laminar vortex rings with large density variations, Int. J. Heat Fluid Flow, Volume 30 (2009), pp. 186-197 | DOI

[61] D. R. Chenoweth; S. Paolucci Natural convection in an enclosed vertical air layer with large horizontal temperature differences, J. Fluid Mech., Volume 169 (1986), pp. 173-210 | DOI | Zbl

[62] J. Fröhlich; S. Gauthier Numerical investigations from compressible to isobaric Rayleigh–Bénard convection, Eur. J. Mech. B, Volume 12 (1993), pp. 141-159 | Zbl

[63] D. S. Crockera; M. Paranga Thermally driven convection in enclosed compressible fluids, Numer. Heat Transf. A, Volume 26 (1994) no. 5, pp. 569-585 | DOI

[64] A. W. Cook; J. J. Riley Direct numerical simulation of a turbulent reactive plume on a parallel computer, J. Comput. Phys., Volume 129 (1996) no. 2, pp. 263-283 | DOI | Zbl

[65] F. Nicoud Conservative high-order finite-difference scheme for low-Mach number flows, J. Comput. Phys., Volume 158 (2000) no. 1, pp. 71-97 | DOI | MR | Zbl

[66] K. S. Hung; C. H. Cheng Pressure effects on natural convection for Non-Boussinesq fluid in a rectangular enclosure, Numer. Heat Transf. A, Volume 41 (2002), pp. 515-528 | DOI

[67] C.-D. Munz; S. Roller; R. Klein; K. J. Geratz The extension of incompressible flow solvers to the weakly compressible regime, Comput. Fluids, Volume 32 (2003) no. 2, pp. 173-196 | DOI | MR | Zbl

[68] J. H. Park; C. D. Munz Multiple pressure variables methods for fluid flow at all Mach numbers, Int. J. Numer. Methods Fluids, Volume 49 (2005), pp. 905-931 | DOI | MR | Zbl

[69] C. Weisman; D. Barkley; P. Le Quéré Transition to unsteadiness of Non-Boussinesq natural convection solutions, 4th International Conference on Computational Heat and Mass Transfer, Paris, France, May 2005 (2005)

[70] O. Bouloumou; E. Serre; P. Bontoux; J. Fröhlich A 3D pseudo-spectral low Mach-number solver for buoyancy driven flows with large temperature differences, Comput. Fluids, Volume 66 (2012), pp. 107-120 | DOI | MR | Zbl

[71] H. Paillère; P. Le Quéré; C. Weisman; J. Vierendeels; E. Dick; M. Braack; F. Dabbene; A. Beccantini; E. Studer; T. Kloczko; C. Corre; V. Heuveline; M. Darbandi; S. F. Hosseinizadeh Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers. Part 2. contributions to the june 2004 conference, ESAIM: Math. Model. Numer. Anal., Volume 39 (2005) no. 3, pp. 617-621 | DOI | Numdam

[72] P. Le Quéré; C. Weisman; H. Paillère; J. Vierendeels; E. Dick; R. Becker; M. Braack; J. Locke Modelling of natural convection flows with large temperature differences: A benchmark problem for low Mach number solvers. Part 1. reference solutions, ESAIM: Math. Model. Numer. Anal., Volume 39 (2005) no. 3, pp. 609-616 | DOI | Numdam | Zbl

[73] J. E. Fromm The time dependent flow of an incompressible viscous fluid, Meth. Comput. Phys., Volume 3 (1964), pp. 345-382

[74] K. Aziz; J. D. Hellums Numerical solution of the three-dimensional equations of motion for laminar natural convection, Phys. Fluids, Volume 10 (1967) no. 2, pp. 314-324 | DOI | Zbl

[75] G. D. Mallinson; G. de Vahl Davis Three-dimensional natural convection in a box: a numerical study, J. Fluid Mech., Volume 83 (1977), pp. 1-31 | DOI

[76] G. J. Hirasaki; J. D. Hellums A general formulation of the boundary conditions on the vector potential in three-dimensional hydrodynamics, Q. Appl. Math., Volume XXVI (1968), pp. 331-342 | DOI | Zbl

[77] G. J. Hirasaki; J. D. Hellums Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics, Q. Appl. Math., Volume 28 (1970), pp. 293-296 | DOI | Zbl

[78] S. M. Richardson; A. R. H. Cornish Solution of three-dimensional incompressible flow problems, J. Fluid Mech., Volume 82 (1977) no. 2, pp. 309-319 | DOI | MR | Zbl

[79] B. Farouk; T. Fusegi A coupled solution of the vorticity–velocity formulation of the incompressible Navier–Stokes equations, Int. J. Numer. Methods Fluids, Volume 5 (1985), pp. 1017-1034 | DOI | MR | Zbl

[80] C. G. Speziale On the advantages of the vorticity–velocity formulation of the Navier–Stokes equations of fluid dynamics, J. Comput. Phys., Volume 73 (1987), pp. 476-480 | DOI | Zbl

[81] F. Stella; G. Guj Vorticity–velocity formulation in the computation of flows in multi-connected domains, Int. J. Numer. Methods Fluids, Volume 9 (1989), pp. 1285-1298 | DOI | Zbl

[82] J. Dacles; M. Hafez Numerical methods for 3-D viscous incompressible flows using velocity-vorticity formulation, AIAA paper, Aerospace Sciences Meeting AIAA-90-0237 (1990)

[83] M. Napolitano; G. Pascazio A numerical method for the vorticity–velocity navier–stokes equations in two and three dimensions, Comput. Fluids, Volume 19 (1991), pp. 489-495 | DOI | Zbl

[84] G. Guj; F. Stella A vorticity–velocity method for numerical solution of 3D incompressible flows, J. Comput. Phys., Volume 106 (1993), pp. 286-298 | DOI | Zbl

[85] G. Pascazio; M. Napolitano A staggered-grid finite volume method for the vorticity–velocity equations, Comput. Fluids, Volume 25 (1996), pp. 433-446 | DOI | MR | Zbl

[86] V. Ruas A new formulation of the three-dimensional velocity-vorticity system in viscous incompressible flow, Z. Angew. Math. Mech., Volume 79 (1999) no. 1, pp. 29-36 | DOI | MR | Zbl

[87] D. C. Lo; K. Murugesan; D. L. Young Numerical solution of three-dimensional velocity-vorticity Navier–Stokes equations by finite difference method, Int. J. Numer. Methods Fluids, Volume 47 (2005), pp. 1469-1487 | Zbl

[88] Y. Maekawa Solution formula for the vorticity equations in the half plane with application to high vorticity creation at zero viscosity limit, Adv. Differ. Equ., Volume 18 (2013), pp. 101-146 | MR | Zbl

[89] H. Kosaka; Y. Maekawa; H. Kozono; M. Okamoto On vorticity formulation for viscous incompressible flows in R+3, Recent Developments of Mathematical Fluid Mechanics (H. Amann; Y. Giga; H. Yamazaki, eds.) (Advances in Mathematical Fluid Mechanics), Birkhäuser, Basel, 2016 | DOI

[90] B. J. Schmitt; W. von Wahl Decomposition of solenoidal fields into poloidal fields, toroidal fields and the mean flow: applications to the Boussinesq equations, The Navier–Stokes Equations II—Theory and Numerical Methods (J. G. Heywood; K. Masuda; R. Rautmann; S. A. Solonnikov, eds.) (Lecture Notes in Mathematics), Volume 1530, Springer-Verlag, Berlin, 1992, pp. 291-305 (Proceedings, Oberwolfach 1991) | DOI | MR | Zbl

[91] H. Ferialdi; M. Lappa; C. Haughey On the role of thermal boundary conditions in typical problems of buoyancy convection: a combined numerical-experimental analysis, Int. J. Heat Mass Transf., Volume 159 (2020), 120012 | DOI

[92] M. Lappa Thermally-driven flows in polymeric liquids, Encyclopedia of Materials: Plastics and Polymers (M. S. J. Hashmi, ed.), Volume 3, Elsevier, Oxford, 2022, pp. 724-742 (ISBN 9780128035818) | DOI

[93] G. De Vahl Davis; I. P. Jones Natural convection in a square cavity a comparison exercise, Int. J. Numer. Methods Fluids, Volume 3 (1983), pp. 227-248 | DOI | Zbl

[94] G. De Vahl Davis Natural convection of air in a square cavity: a benchmark solution, Int. J. Numer. Methods Fluids, Volume 3 (1983), pp. 249-264 | DOI | Zbl

[95] Numerical Simulation of Oscillatory Convection in Low-Pr Fluids, a GAMM Workshop (B. Roux, ed.), Notes on Numerical Fluid Mechanics, 27, Vieweg, Braunschweig, 1990 (ISBN 9783528076283) | DOI | Zbl

[96] I. Goldhirsch; R. B. Pelz; S. A. Orszag Numerical simulation of thermal convection in a two-dimensional finite box, J. Fluid Mech., Volume 199 (1989), pp. 1-28 | DOI | MR | Zbl

[97] J. Mizushima; T. Adachi Sequential transitions of the thermal convection in a square cavity, J. Phys. Soc. Jpn., Volume 66 (1997) no. 1, pp. 79-90 | DOI

[98] J. P. Pulicani; E. C. Del Arco; A. Randriamampianina; P. Bontoux; R. Peyret Spectral simulations of oscillatory convection at low Prandtl number, Int. J. Numer. Methods Fluids, Volume 10 (1990) no. 5, pp. 481-517 | DOI | Zbl

[99] A. Yu. Gelfgat; P. Z. Bar-Yoseph; A. L. Yarin Stability of multiple steady states of convection in laterally heated cavities, J. Fluid Mech., Volume 388 (1999), pp. 315-334 | DOI | MR | Zbl

[100] R. M. Clever; F. H. Busse Three-dimensional knot convection in a layer heated from below, J. Fluid Mech., Volume 198 (1989), pp. 345-363 | DOI | Zbl

[101] R. M. Clever; F. H. Busse Nonlinear oscillatory convection, J. Fluid Mech., Volume 176 (1987), pp. 403-417 | DOI

[102] R. M. Clever; F. H. Busse Tertiary and quarternary states of fluid flow and the transition to turbulence, J. Appl. Sci. Res., Volume 51 (1993) no. 1-2, pp. 25-29 | DOI | Zbl

[103] R. M. Clever; F. H. Busse Steady and oscillatory bimodal convection, J. Fluid Mech., Volume 271 (1994), pp. 103-118 | DOI | MR | Zbl

[104] R. M. Clever; F. H. Busse Standing and traveling oscillatory blob convection, J. Fluid Mech., Volume 297 (1995), pp. 255-273 | DOI | Zbl

[105] A. Nakano; H. Ozoe; S. W. Churchill Numerical computation of natural convection for a low-Prandtl-number fluid in a shallow rectangular region heated from below, Chem. Eng. J., Volume 71 (1998) no. 3, pp. 175-182 | DOI

[106] H. Tomita; K. Abe Numerical simulation of the Rayleigh–Bénard convection of air in a box of a large aspect ratio, Phys. Fluids, Volume 11 (1999), pp. 743-745 | DOI | Zbl

[107] E. Bucchignani; F. Stella Rayleigh–Bénard convection in limited domains: Part 2—transition to chaos, Numer. Heat Transf. A, Volume 36 (1999) no. 1, pp. 17-34 | DOI

[108] F. Stella; E. Bucchignani Rayleigh–Bénard convection in limited domains: Part 1—oscillatory flow, Numer. Heat Transf. A, Volume 36 (1999) no. 1, pp. 1-16 | DOI

[109] S. Yigit; J. Hasslberger; M. Klein; N. Chakraborty Near wall Prandtl number effects on velocity gradient invariants and flow topologies in turbulent Rayleigh–Bénard convection, Sci. Rep., Volume 10 (2020), 14887 | DOI

[110] T. Fusegi; J. M. Hyun; K. Kuwahara; B. Farouk A numerical study of three dimensional natural convection in a differentially heated cubical enclosure, Int. J. Heat Mass Transf., Volume 34 (1991) no. 6, pp. 1543-1557 | DOI

[111] T. Fusegi; J. M. Hyun; K. Kuwahara Three-dimensional simulations of natural convection in a sidewall-heated cube, Int. J. Numer. Methods Fluids, Volume 13 (1991), pp. 857-867 | DOI | Zbl

[112] R. J. A. Janssen; R. A. W. M. Henkes Instabilities in three-dimensional differentially heated cavities with adiabatic horizontal walls, Phys. Fluids, Volume 8 (1996) no. 1, pp. 62-74 | DOI | Zbl

[113] G. Labrosse; E. Tric; H. Khallouf; M. Betrouni A direct (pseudo-spectral) solver of the 2D–3D Stokes problem: transition to unsteadiness of natural-convection flow in a differentially heated cubical cavity, Numer. Heat Transf. B, Volume 31 (1997), pp. 261-276 | DOI

[114] F. X. Trias; M. Soria; A. Oliva; C. D. Pérez-Segarra Direct numerical simulations of two- and three-dimensional turbulent natural convection flows in a differentially heated cavity of aspect ratio 4, J. Fluid Mech., Volume 586 (2007), pp. 259-293 | DOI | Zbl

[115] A. Yu. Gelfgat Instability of natural convection of air in a laterally heated cube with perfectly insulated horizontal boundaries and perfectly conducting spanwise boundaries, Phys. Rev. Fluids, Volume 5 (2020), 093901

[116] A. Yu. Gelfgat Instability of natural convection in a laterally heated cube with perfectly conducting horizontal boundaries, Theor. Comput. Fluid Dyn., Volume 34 (2020), pp. 693-711 | DOI | MR

[117] D. Henry; M. Buffat Two and three-dimensional numerical simulations of the transition to oscillatory convection in low-Prandtl number fluids, J. Fluid Mech., Volume 374 (1998), pp. 145-171 | DOI | Zbl

[118] S. Wakitani Numerical study of three-dimensional oscillatory natural convection at low Prandtl number in rectangular enclosures, J. Heat Transf., Volume 123 (2001), pp. 77-83 | DOI

[119] B. Hof; A. Juel; L. Zhao; D. Henry; H. Ben Hadid; T. Mullin On the onset of oscillatory convection in molten gallium, J. Fluid Mech., Volume 515 (2004), pp. 391-413 | DOI | Zbl

[120] W. J. Hiller; T. Koch St.; T. A. Kowalewski; F. Stella Onset of natural convection in a cube, Int. J. Heat Mass Transfer, Volume 36 (1993) no. 13, pp. 3251-3263 | DOI

[121] T. A. Kowalewski Experimental validation of numerical codes in thermally driven flows, Advances in Computational Heat Transfer, Begel House Inc., New York, 1998, pp. 1-15

[122] B. A. V. Bennett; J. Hsueh Natural convection in a cubic cavity: implicit numerical solution of two benchmark problems, Numer. Heat Transf. A, Volume 50 (2006) no. 2, pp. 99-123 | DOI

[123] R. M. Kerr Rayleigh number scaling in numerical convection, J. Fluid Mech., Volume 310 (1996), pp. 139-179 | DOI | Zbl

[124] M. Farhangnia; S. Biringen; L. J. Peltier Numerical simulation of two-dimensional buoyancy-driven turbulence in a tall rectangular cavity, Int. J. Numer. Methods Fluids, Volume 23 (1996) no. 12, pp. 1311-1326 | DOI | Zbl

[125] A. N. Kolmogorov The local structure of turbulence in incompressible viscous fluids at very large Reynolds numbers, Dokl. Akad. Nauk. SSSR, Volume 30 (1941), pp. 299-303 Reprinted in Proc. R. Soc. Lond. A 434 (1991), p. 9–13

[126] A. N. Kolmogorov On the degeneration of isotropic turbulence in an incompressible viscous fluids, Dokl. Akad. Nauk. SSSR, Volume 31 (1941), pp. 538-541

[127] A. N. Kolmogorov Dissipation of energy in isotropic turbulence, Dokl. Akad. Nauk. SSSR, Volume 32 (1941), pp. 19-21 | MR | Zbl

[128] A. N. Kolmogorov Equations of turbulent motion in an incompressible fluid, Izv. Akad. Nauk. SSSR, Ser. Fiz., Volume 6 (1942), pp. 56-58

[129] R. H. Kraichnan On Kolmogorov’s inertial-range theories, J. Fluid Mech., Volume 62 (1974), pp. 305-330 | DOI | Zbl

[130] A. K. De; V. Eswaran; P. K. Mishra Scalings of heat transport and energy spectra of turbulent Rayleigh–Bénard convection in a large-aspect-ratio box, Int. J. Heat Fluid Flow, Volume 67 (2017), pp. 111-124 | DOI

[131] S. Paolucci Direct numerical simulation of two-dimensional turbulent natural convection in an enclosed cavity, J. Fluid Mech., Volume 215 (1990), pp. 229-262 | DOI

[132] L. Davidson Second-order corrections of the k-ε model to account for non-isotropic effects due to buoyancy, Int. J. Heat Mass Transf., Volume 33 (1990) no. 12, pp. 2599-2608 | DOI

[133] K. Hanjalic; S. Vasic Computation of turbulent natural convection in rectangular enclosures with an algebraic flux model, Int. J. Heat Mass Transf., Volume 36 (1993), pp. 3603-3624 | DOI

[134] H. S. Dol; K. Hanjalic; S. Kenjeres A comparative assessment of the second-moment differential and algebraic models in turbulent natural convection, Int. J. Heat Fluid Flow, Volume 18 (1997), pp. 4-14 | DOI

[135] F. Liu; J. X. Wen Development and validation of an advanced turbulence model for buoyancy driven flows in enclosures, Int. J. Heat Mass Transf., Volume 42 (1999), pp. 3967-3981 | DOI | Zbl

[136] H. Dol; K. Hanjalic Computational study of turbulent natural convection in a side-heated near-cubic enclosure at a high Rayleigh number, Int. J. Heat Mass Transf., Volume 44 (2001), pp. 2323-2344 | DOI | Zbl

[137] K. J. Hsieh; F. S. Lien Numerical modeling of buoyancy-driven turbulent flows in enclosures, Int. J. Heat Fluid Flow, Volume 25 (2004) no. 4, pp. 659-670 | DOI

[138] Z. Altaç; N. Ugurlubilek Assessment of turbulence models in natural convection from two- and three-dimensional rectangular enclosures, Int. J. Therm. Sci., Volume 107 (2016), pp. 237-246 | DOI

[139] J. Smagorinsky General circulation experiments with the primitive equations. Part I: the basic experiment, Mon. Weather Rev., Volume 91 (1963) no. 3, pp. 99-164 | DOI

[140] D. K. Lilly On the numerical simulation of buoyant convection, Tellus, Volume 14 (1962), pp. 148-172 | DOI

[141] P. J. Mason Large-Eddy simulation of the convective atmospheric boundary layer, J. Atmos. Sci., Volume 46 (1989), pp. 1492-1516 | DOI

[142] S. Kenjeres; K. Hanjalic Transient analysis of Rayleigh–Bénard convection with a RANS model, Int. J. Heat Fluid Flow, Volume 20 (1999), pp. 329-340 | DOI

[143] S. Kenjeres; K. Hanjalic LES, T-RANS and hybrid simulations of thermal convection at high Ra numbers, Int. J. Heat Fluid Flow, Volume 27 (2006) no. 5, pp. 800-810 | DOI

[144] S. H. Peng; L. Davidson Large eddy simulation for turbulent buoyant flow in a confined cavity, Int. J. Heat Fluid Flow, Volume 22 (2001), pp. 323-331 | DOI

[145] A. Sergent; P. Joubert; P. Le Quere Development of a local subgrid diffusivity model for large eddy simulation of buoyancy driven flows: application to a square differentially heated cavity, Numer. Heat Transf. A, Volume 44 (2003) no. 8, pp. 789-810 | DOI

[146] J. Salat; S. Xin; P. Joubert; A. Sergent; F. Penot; P. Le Quere Experimental and numerical investigation of turbulent natural convection in a large air-filled cavity, Int. J. Heat Fluid Flow, Volume 25 (2004), pp. 824-832 | DOI

[147] F. E. Ham; F. S. Lien; A. B. Strong Multiple semi-coarsened multigrid method with application to large eddy simulation, Int. J. Numer. Methods Fluids, Volume 50 (2006), pp. 579-596 | DOI | MR | Zbl

[148] A. Sergent; P. Joubert; S. Xin; P. Le Quéré Resolving the stratification discrepancy of turbulent natural convection in differentially heated air-filled cavities Part II: End walls effects using large eddy simulation, Int. J. Heat Fluid Flow, Volume 39 (2013), pp. 15-27 | DOI

[149] Z. Zhang; W. Chen; Z. Zhu; Y. Li Numerical exploration of turbulent air natural convection in a differentially heated square cavity at Ra = 5.33 × 10 9 , Heat Mass Transf., Volume 50 (2014), pp. 1737-1749 | DOI

[150] T. M. Eidson Numerical simulation of turbulent Rayleigh–Bénard convection using subgrid scale modelling, J. Fluid Mech., Volume 158 (1985), pp. 245-268 | DOI | MR | Zbl

[151] V. C. Wong; D. K. Lilly A comparison of two dynamic subgrid closure methods for turbulent thermal convection, Phys. Fluids, Volume 6 (1994), pp. 1016-1023 | DOI | Zbl

[152] S. J. Kimmel; J. A. Domaradzki Large eddy simulations of Rayleigh–Bénard convection using subgrid scale estimation model, Phys. Fluids, Volume 12 (2000), pp. 169-184 | DOI | Zbl

[153] A. Sergent; P. Joubert; P. Le Quere Large-eddy simulation of turbulent thermal convection using a mixed scale diffusivity model, Prog. Comput. Fluid Dyn., Volume 6 (2006) no. 1–3, pp. 40-49 | DOI | MR | Zbl

[154] F. Dabbagh; F. X. Trias; A. Gorobets; A. Oliva New subgrid-scale models for large-eddy simulation of Rayleigh–Bénard convection, J. Phys. Conf. Ser., Volume 745 (2016), 032041 | DOI

[155] R. Togni; A. Cimarelli; E. De Angelis Resolved and subgrid dynamics of Rayleigh–Bénard convection, J. Fluid Mech., Volume 867 (2019), pp. 906-933 | DOI | Zbl

Cited by Sources:

Comments - Policy