Comptes Rendus
Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights
Comptes Rendus. Mécanique, Physical Science in Microgravity within the Thematic Group Fundamental and Applied Microgravity, Volume 351 (2023) no. S2, pp. 273-287.

Thermoelectric convection in a plane capacitor is investigated in a microgravity environment and in the case of the thermal stable and unstable stratification in terrestrial conditions. Energetic analysis shows that in the thermal stable stratification, the thermoelectric convection is delayed while in the thermal unstable stratification, it is enhanced by the Archimedean buoyancy before the latter takes over the dielectrophoretic buoyancy and drives natural thermal convection. An experiment in parabolic flights shows the formation of thermoelectric convection at the end of the microgravity phase.

Nous avons étudié la convection thermoélectrique dans un condensateur plan placé dans un environnement de microgravité et dans des conditions terrestres avec une stratification thermique instable ou stable. L’analyse énergétique montre que dans le cas de stratification stable, la convection thermoélectrique est retardée alors que dans le cas de stratification thermique instable, elle est amplifiée par la poussée d’Archimède avant que cette dernière ne prenne le dessus et pilote la convection thermique naturelle. Une expérience réalisée lors des vols paraboliques illustre la formation de la convection thermoélectrique à la fin de la phase de microgravité.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.143
Keywords: Thermoelectric convection, Dielectrophoretic force, Electric gravity, Zero-gravity, Convective patterns
Mots-clés : Convection thermoélectrique, Force diélectrophorétique, Gravité électrique, Gravité zéro, Motifs de convection

Elhadj B. Barry 1; Harunori N. Yoshikawa 2; Changwoo Kang 3; Antoine Meyer 4; Martin Meier 4; Olivier Crumeyrolle 1; Christoph Egbers 4; Innocent Mutabazi 1

1 Normandie Université, UNIHAVRE, LOMC, UMR CNRS 6294, 53, rue de Prony, 76058 Le Havre Cedex, France
2 Université Côte d’Azur, INPHYNI, 06100 Nice Cedex, France
3 Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
4 Department of Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus-Senftenberg, Siemens-Halske-Ring 15a, 03046 Cottbus, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S2_273_0,
     author = {Elhadj B. Barry and Harunori N. Yoshikawa and Changwoo Kang and Antoine Meyer and Martin Meier and Olivier Crumeyrolle and Christoph Egbers and Innocent Mutabazi},
     title = {Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {273--287},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S2},
     year = {2023},
     doi = {10.5802/crmeca.143},
     language = {en},
}
TY  - JOUR
AU  - Elhadj B. Barry
AU  - Harunori N. Yoshikawa
AU  - Changwoo Kang
AU  - Antoine Meyer
AU  - Martin Meier
AU  - Olivier Crumeyrolle
AU  - Christoph Egbers
AU  - Innocent Mutabazi
TI  - Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 273
EP  - 287
VL  - 351
IS  - S2
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.143
LA  - en
ID  - CRMECA_2023__351_S2_273_0
ER  - 
%0 Journal Article
%A Elhadj B. Barry
%A Harunori N. Yoshikawa
%A Changwoo Kang
%A Antoine Meyer
%A Martin Meier
%A Olivier Crumeyrolle
%A Christoph Egbers
%A Innocent Mutabazi
%T Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights
%J Comptes Rendus. Mécanique
%D 2023
%P 273-287
%V 351
%N S2
%I Académie des sciences, Paris
%R 10.5802/crmeca.143
%G en
%F CRMECA_2023__351_S2_273_0
Elhadj B. Barry; Harunori N. Yoshikawa; Changwoo Kang; Antoine Meyer; Martin Meier; Olivier Crumeyrolle; Christoph Egbers; Innocent Mutabazi. Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights. Comptes Rendus. Mécanique, Physical Science in Microgravity within the Thematic Group Fundamental and Applied Microgravity, Volume 351 (2023) no. S2, pp. 273-287. doi : 10.5802/crmeca.143. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.143/

[1] L. D. Landau; E. M. Lifshitz Electrodynamics of Continuous Media, Elsevier Buttherworth-Heinemann, Burlington, MA, 1984

[2] R. E. Rosensweig Ferrohydrodynamics, Cambridge University Press, Cambridge, MA, 1985

[3] P. H. Roberts Electrohydrodynamic convection, Q. J. Mech. Appl. Math., Volume 22 (1969) no. 2, pp. 211-220 | DOI | Zbl

[4] A. A. Bozhko; S. A. Suzlov Convection in Ferro-Nanofluids: Experiments and Theory, Springer (eBook), 2018 | DOI

[5] J. E. Hart; G. A. Glatzmaier; J. Toomre Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity, J. Fluid Mech., Volume 173 (1986), pp. 519-544 | DOI

[6] B. Futterer; A. Krebs; A.-C. Plesa; F. Zaussinger; R. Hollerbach; D. Breuer; C. Egbers Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., Volume 735 (2013), pp. 647-683 | DOI | Zbl

[7] H. N. Yoshikawa; O. Crumeyrolle; I. Mutabazi Dielectrophoretic force-driven thermal convection in annular geometry, Phys. Fluids, Volume 25 (2013), 024106 | DOI

[8] V. Travnikov; O. Crumeyrolle; I. Mutabazi Influence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric fluid under microgravity, Acta Astronaut., Volume 129 (2016), pp. 88-94 | DOI

[9] C. Kang; I. Mutabazi Dielectrophoretic buoyancy and heat transfer in a dielectric liquid contained in a cylindrical annular cavity, J. Appl. Phys., Volume 125 (2019), 184902 | DOI

[10] C. Kang; I. Mutabazi Columnar vortices induces by dielectrophoretic force in a stationary cylindrical annulus filled with a dielectric liquid, J. Fluid Mech., Volume 908 (2021), A26 | DOI | Zbl

[11] P. J. Stiles Electro-thermal convection in dielectric liquids, Chem. Phys. Lett., Volume 179 (1991) no. 3, pp. 311-315 | DOI

[12] H. N. Yoshikawa; M. Tadie Fogaing; O. Crumeyrolle; I. Mutabazi Dielectrophoretic Rayleigh–Bénard convection under microgravity conditions, Phys. Rev. E, Volume 87 (2013), 043003 | DOI

[13] M. Tadie Fogaing; H. N. Yoshikawa; O. Crumeyrolle; I. Mutabazi Heat transfer in the thermo-electro-hydrodynamic convection under microgravity conditions, Eur. Phys. J. E, Volume 37 (2014), 35

[14] Z. Liu; C. Li; B. Wang Flow structure and heat transfer of electro-thermo-convection in a dielectric liquid layer, Phys. Fluids, Volume 31 (2019), 064103

[15] H. Yoshikawa; C. Kang; I. Mutabazi; F. Zaussinger; P. Haun; C. Egbers Thermoelectrohydrodynamic convection in parallel plate capacitors under dielectric heating conditions, Phys. Rev. Fluids, Volume 5 (2020), 113503 | DOI

[16] S. Chandrasekhar Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, 1981

[17] E. B. Barry; C. Kang; H. Yoshikawa; I. Mutabazi Transfert de chaleur par convection thermoelectrique dans des cavités rectangulaires horizontales, Entropie, Volume 2 (2021) no. 2, pp. 1-11 (ISTE Open Sciences) | DOI

[18] A. Meyer; M. Meier; M. Jongmanns; T. Seelig; C. Egbers; I. Mutabazi Effect of the initial conditions on the growth of thermoelectric instabilities during parabolic flights, Microgravity Sci. Technol., Volume 31 (2019), pp. 715-721 | DOI

[19] K. Hayasaka; Y. Tagawa; T. Liu; M. Kameda Optical-flow-based background-oriented Schlieren technique for measuring a laser-induced underwater shock wave, Exp. Fluids, Volume 57 (2016), 179 | DOI

[20] G. Meier Computerized background-oriented Schlieren, Exp. Fluids, Volume 33 (2002), pp. 181-187 | DOI

[21] L. Venkatakrishnan; G. E. A. Meier Density measurements using the background oriented Schlieren technique, Exp. Fluids, Volume 37 (2004), pp. 237-247 | DOI

[22] M. Raffel Background-oriented Schlieren (BOS) techniques, Exp. Fluids, Volume 56 (2015), 60 | DOI

Cited by Sources:

Comments - Policy