Thermoelectric convection in a plane capacitor is investigated in a microgravity environment and in the case of the thermal stable and unstable stratification in terrestrial conditions. Energetic analysis shows that in the thermal stable stratification, the thermoelectric convection is delayed while in the thermal unstable stratification, it is enhanced by the Archimedean buoyancy before the latter takes over the dielectrophoretic buoyancy and drives natural thermal convection. An experiment in parabolic flights shows the formation of thermoelectric convection at the end of the microgravity phase.
Nous avons étudié la convection thermoélectrique dans un condensateur plan placé dans un environnement de microgravité et dans des conditions terrestres avec une stratification thermique instable ou stable. L’analyse énergétique montre que dans le cas de stratification stable, la convection thermoélectrique est retardée alors que dans le cas de stratification thermique instable, elle est amplifiée par la poussée d’Archimède avant que cette dernière ne prenne le dessus et pilote la convection thermique naturelle. Une expérience réalisée lors des vols paraboliques illustre la formation de la convection thermoélectrique à la fin de la phase de microgravité.
Revised:
Accepted:
Online First:
Published online:
Mots-clés : Convection thermoélectrique, Force diélectrophorétique, Gravité électrique, Gravité zéro, Motifs de convection
Elhadj B. Barry 1; Harunori N. Yoshikawa 2; Changwoo Kang 3; Antoine Meyer 4; Martin Meier 4; Olivier Crumeyrolle 1; Christoph Egbers 4; Innocent Mutabazi 1
@article{CRMECA_2023__351_S2_273_0, author = {Elhadj B. Barry and Harunori N. Yoshikawa and Changwoo Kang and Antoine Meyer and Martin Meier and Olivier Crumeyrolle and Christoph Egbers and Innocent Mutabazi}, title = {Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights}, journal = {Comptes Rendus. M\'ecanique}, pages = {273--287}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S2}, year = {2023}, doi = {10.5802/crmeca.143}, language = {en}, }
TY - JOUR AU - Elhadj B. Barry AU - Harunori N. Yoshikawa AU - Changwoo Kang AU - Antoine Meyer AU - Martin Meier AU - Olivier Crumeyrolle AU - Christoph Egbers AU - Innocent Mutabazi TI - Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights JO - Comptes Rendus. Mécanique PY - 2023 SP - 273 EP - 287 VL - 351 IS - S2 PB - Académie des sciences, Paris DO - 10.5802/crmeca.143 LA - en ID - CRMECA_2023__351_S2_273_0 ER -
%0 Journal Article %A Elhadj B. Barry %A Harunori N. Yoshikawa %A Changwoo Kang %A Antoine Meyer %A Martin Meier %A Olivier Crumeyrolle %A Christoph Egbers %A Innocent Mutabazi %T Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights %J Comptes Rendus. Mécanique %D 2023 %P 273-287 %V 351 %N S2 %I Académie des sciences, Paris %R 10.5802/crmeca.143 %G en %F CRMECA_2023__351_S2_273_0
Elhadj B. Barry; Harunori N. Yoshikawa; Changwoo Kang; Antoine Meyer; Martin Meier; Olivier Crumeyrolle; Christoph Egbers; Innocent Mutabazi. Thermoelectric convection in a planar capacitor: theoretical studies and experiments in parabolic flights. Comptes Rendus. Mécanique, Physical Science in Microgravity within the Thematic Group Fundamental and Applied Microgravity, Volume 351 (2023) no. S2, pp. 273-287. doi : 10.5802/crmeca.143. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.143/
[1] Electrodynamics of Continuous Media, Elsevier Buttherworth-Heinemann, Burlington, MA, 1984
[2] Ferrohydrodynamics, Cambridge University Press, Cambridge, MA, 1985
[3] Electrohydrodynamic convection, Q. J. Mech. Appl. Math., Volume 22 (1969) no. 2, pp. 211-220 | DOI | Zbl
[4] Convection in Ferro-Nanofluids: Experiments and Theory, Springer (eBook), 2018 | DOI
[5] Space-laboratory and numerical simulations of thermal convection in a rotating hemispherical shell with radial gravity, J. Fluid Mech., Volume 173 (1986), pp. 519-544 | DOI
[6] Sheet-like and plume-like thermal flow in a spherical convection experiment performed under microgravity, J. Fluid Mech., Volume 735 (2013), pp. 647-683 | DOI | Zbl
[7] Dielectrophoretic force-driven thermal convection in annular geometry, Phys. Fluids, Volume 25 (2013), 024106 | DOI
[8] Influence of the thermo-electric coupling on the heat transfer in cylindrical annulus with a dielectric fluid under microgravity, Acta Astronaut., Volume 129 (2016), pp. 88-94 | DOI
[9] Dielectrophoretic buoyancy and heat transfer in a dielectric liquid contained in a cylindrical annular cavity, J. Appl. Phys., Volume 125 (2019), 184902 | DOI
[10] Columnar vortices induces by dielectrophoretic force in a stationary cylindrical annulus filled with a dielectric liquid, J. Fluid Mech., Volume 908 (2021), A26 | DOI | Zbl
[11] Electro-thermal convection in dielectric liquids, Chem. Phys. Lett., Volume 179 (1991) no. 3, pp. 311-315 | DOI
[12] Dielectrophoretic Rayleigh–Bénard convection under microgravity conditions, Phys. Rev. E, Volume 87 (2013), 043003 | DOI
[13] Heat transfer in the thermo-electro-hydrodynamic convection under microgravity conditions, Eur. Phys. J. E, Volume 37 (2014), 35
[14] Flow structure and heat transfer of electro-thermo-convection in a dielectric liquid layer, Phys. Fluids, Volume 31 (2019), 064103
[15] Thermoelectrohydrodynamic convection in parallel plate capacitors under dielectric heating conditions, Phys. Rev. Fluids, Volume 5 (2020), 113503 | DOI
[16] Hydrodynamic and Hydromagnetic Stability, Dover Publications, New York, 1981
[17] Transfert de chaleur par convection thermoelectrique dans des cavités rectangulaires horizontales, Entropie, Volume 2 (2021) no. 2, pp. 1-11 (ISTE Open Sciences) | DOI
[18] Effect of the initial conditions on the growth of thermoelectric instabilities during parabolic flights, Microgravity Sci. Technol., Volume 31 (2019), pp. 715-721 | DOI
[19] Optical-flow-based background-oriented Schlieren technique for measuring a laser-induced underwater shock wave, Exp. Fluids, Volume 57 (2016), 179 | DOI
[20] Computerized background-oriented Schlieren, Exp. Fluids, Volume 33 (2002), pp. 181-187 | DOI
[21] Density measurements using the background oriented Schlieren technique, Exp. Fluids, Volume 37 (2004), pp. 237-247 | DOI
[22] Background-oriented Schlieren (BOS) techniques, Exp. Fluids, Volume 56 (2015), 60 | DOI
Cited by Sources:
Comments - Policy