Novel theories are needed for the discovery of innovative and exotic metamaterial and for their rational design. The current practice of mechanical analyses based upon moribund classical theories and experimental trial-error campaigns is caught in an inescapable vortex and illusion of inductive reasoning. The needed novel research paradigm is one in which the formulation of theoretical concepts precede their experimental validation. In the absence of theoretical understanding, the design experiments and collection of experimental evidence will remain unavoidably circumscribed. History of science can provide us guidance in the search for the needed powerful tools required for discovery. The principle of virtual work provides the necessary framework for development of theories that can lead to novel metamaterials, as it was the unifying principle which allowed the French-Italian School, headed by D’Alembert, Lagrange and Gabrio Piola, to found modern continuum mechanics. Based upon this framework we have conceived a metamaterial synthesis schema that exploits micro-macro identification traceable to the early days of the formulation of continuum theories for deformable solids. The schema is illustrated with application to metamaterials with pantographic and granular motifs based upon higher-gradient and higher-order theories.
La « Méchanique » Analytique a été une théorie controversée depuis sa formulation par Lagrange en 1788 et la controverse se poursuit jusqu’à nos jours : Truesdell déclare que la Mécanique doit être fondée sur le concept de « force ». Au contraire selon D’Alembert le seul principe unificateur est le Principe des Travaux Virtuels (PTV) : la force étant un concept dérivé, utile dans les applications. Ce débat épistémologique est-il inutile ? La mécanique est-elle aujourd’hui aussi fertile de problèmes théoriques et potentialités dans les applications technologiques ? En effet, la mécanique si basée sur le PTV s’avère être un outil puissant pour favoriser l’invention scientifique et l’avancement technologique : il rends possible, par exemple, la théorie moderne des méta-matériaux ou matériaux architecturés, c’est-à-dire, la théorie qui nous aide à « inventer » des matériaux qui « n’existent pas dans la nature et qui ont des propriétés à l’apparence magique » : donc l’approche épistémologique qui avait inspiré D’Alembert semble n’avoir encore épuisé sa capacité novatrice. En effet, le PTV permet d’homogénéiser le comportement des systèmes complexes et de formuler des théories macroscopiques prédictives du comportement « global » des microstructures qui forment les métamatériaux « exotiques ». La compréhension des résultats du débat épistémologique fondé sur la dichotomie force/travail nous offre un outil puissant pour concevoir et produire des matériaux « réels ». Parmi les infinies possibilités on signale les matériaux i) avec effet Poisson négatif ; ii) qui restent dans le régime élastique même en grandes déformations ; iii) qui se comportent, dans les petites déformations, comme des fluides et, en grandes déformations, comme des solides (pentamode materials) ; iv) avec une structure granulaire, qui ont un comportement chiral au niveaux macroscopique.
Revised:
Accepted:
Online First:
Published online:
Mot clés : métamatériaux, méthodes énergétiques, conception rationnelle, principe des travaux virtuels, Milieux continus généralisés, Microstructure
Francesco dell’Isola 1; Anil Misra 2
@article{CRMECA_2023__351_S3_65_0, author = {Francesco dell{\textquoteright}Isola and Anil Misra}, title = {Principle of {Virtual} {Work} as {Foundational} {Framework} for {Metamaterial} {Discovery} and {Rational} {Design}}, journal = {Comptes Rendus. M\'ecanique}, pages = {65--89}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S3}, year = {2023}, doi = {10.5802/crmeca.151}, language = {en}, }
TY - JOUR AU - Francesco dell’Isola AU - Anil Misra TI - Principle of Virtual Work as Foundational Framework for Metamaterial Discovery and Rational Design JO - Comptes Rendus. Mécanique PY - 2023 SP - 65 EP - 89 VL - 351 IS - S3 PB - Académie des sciences, Paris DO - 10.5802/crmeca.151 LA - en ID - CRMECA_2023__351_S3_65_0 ER -
%0 Journal Article %A Francesco dell’Isola %A Anil Misra %T Principle of Virtual Work as Foundational Framework for Metamaterial Discovery and Rational Design %J Comptes Rendus. Mécanique %D 2023 %P 65-89 %V 351 %N S3 %I Académie des sciences, Paris %R 10.5802/crmeca.151 %G en %F CRMECA_2023__351_S3_65_0
Francesco dell’Isola; Anil Misra. Principle of Virtual Work as Foundational Framework for Metamaterial Discovery and Rational Design. Comptes Rendus. Mécanique, Volume 351 (2023) no. S3, pp. 65-89. doi : 10.5802/crmeca.151. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.151/
[1] Naive Model Theory: its applications to the Theory of Metamaterials Design, Discrete and Continuum Models for Complex Metamaterials, Cambridge University Press, 2020, pp. 141-196 | DOI
[2] Mechanical metamaterials: a state of the art, Math. Mech. Solids, Volume 24 (2019) no. 1, pp. 212-234 | DOI | MR | Zbl
[3] In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials, Math. Mech. Solids, Volume 26 (2021) no. 7, pp. 1074-1103 | DOI | MR | Zbl
[4] A second gradient formulation for a 2D fabric sheet with inextensible fibres, Zeitschrift für angewandte Mathematik und Physik, Volume 67 (2016) no. 5, 114, 1-24 pages | DOI | MR | Zbl
[5] A study about the impact of the topological arrangement of fibers on fiber-reinforced composites: some guidelines aiming at the development of new ultra-stiff and ultra-soft metamaterials, Int. J. Solids Struct., Volume 203 (2020), pp. 73-83 | DOI
[6] La mécanique dans le style français: un outil puissant pour la découverte, Mechanics in the French style: a powerful tool for discovery, 2022 (p. at minute 40:00., https://www.youtube.com/watch?v=Asxw72EL37g&t=1499s)
[7] The Principle of Virtual Work: A powerful tool for discovery and metamaterials design, 2022 (ICONSOM 2022 Alghero Plenary Lecture, https://www.youtube.com/watch?v=dGPYfo24wIg&list=PLWzlK5oO41smV-7d3O8lbv7QoCZJ-P7oN&index=4&t=155s)
[8] Granular micromechanics: bridging grain interactions and continuum descriptions, 2019 (CONSOM 2019 Rome Plenary Lecture, https://www.youtube.com/watch?v=krhPC2xOdZQ)
[9] The mechanical problems in the corpus of Aristotle (2007) (https://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1067&context=classicsfacpub)
[10] Structures of argument and concepts of force in the Aristotelian Mechanical Problems, Evidence and Interpretation in Studies on Early Science and Medicine, Brill, 2010, pp. 43-67 | DOI
[11] The classical field theories, Principles of classical mechanics and field theory/Prinzipien der Klassischen Mechanik und Feldtheorie, Springer, 1960, pp. 226-858 | DOI
[12] The Vaiśeshika Aphorisms of Kanāda: With Comments from the Upaskâra of Sánkara Misra and the Vivritti of Jaya-Nârâyana Tarkapanchânana, Oriental Books, 1873
[13] Matter and Mind: The Vaiśeshika Sūtra of Kanāda, Translated:Kak, S, Mount Meru Publishing, 2016
[14] The Question of the Authenticity of the Mechanical Problems (2013) (https://www.uni-heidelberg.de/md/philsem/personal/mclaughlin_authenticity_2013_2.pdf)
[15] et al. The forgotten revolution: how science was born in 300 BC and why it had to be reborn, Springer, 2003
[16] et al. D’Alembert: Between Newtonian Science and the Cartesian Inheritance, Advances in Historical Studies, Volume 6 (2017) no. 1, pp. 128-144 | DOI
[17] Newton, the man, Essays in Biography, Springer, 2010, pp. 363-374 | DOI
[18] Isaac Newton: the last sorcerer, 176, Fourth Estate London, 1997
[19] Role of higher-order inertia in modulating elastic wave dispersion in materials with granular microstructure, International Journal of Mechanical Sciences, Volume 185 (2020), 105867 | DOI
[20] The science of mechanics: A critical and historical exposition of its principles, Open court publishing Company, 1893 | Zbl
[21] ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, J. Appl. Math. Stochastic Anal. (2022)
[22] A program toward rediscovering the rational mechanics of the age of reason, Arch. Hist. Exact Sci., Volume 1 (1960), pp. 3-36 | MR | Zbl
[23] Essays in the History of Mechanics, Springer, 2012 | DOI
[24] History of strength of materials: with a brief account of the history of theory of elasticity and theory of structures, Courier Corporation, 1983
[25] A First Course in Rational Continuum Mechanics V1, Academic Press Inc., 1992
[26] The Principle of least action, A survey of physical theory, Courier Corporation, 1960, pp. 69-81
[27] La scienza delle costruzioni e il suo sviluppo storico: passim, Edizioni di storia e letteratura,, 2007
[28] An introduction to the history of structural mechanics: Part I: Statics and resistance of solids, Springer, 2012
[29] Which elasticity tensors are realizable?, J. Eng. Mater. Technol., Volume 117 (1995), pp. 483-493 | DOI
[30] The structure of scientific revolutions, 111, University of Chicago Press, 1962
[31] Microcontinuum field theories: I. Foundations and Solids, Springer, 1999 | DOI
[32] Topological mechanics of origami and kirigami, Phys. Rev. Lett., Volume 116 (2016), 135501, 13 pages | DOI
[33] Mechanical metamaterials based on origami and kirigami, Applied Physics Reviews, Volume 8 (2021), 041319, 4 pages | DOI
[34] Two-dimensional continua capable of large elastic extension in two independent directions: asymptotic homogenization, numerical simulations and experimental evidence, Mech. Res. Commun., Volume 103 (2020), 103466 | DOI
[35] Equilibria determination of elastic articulated duoskelion beams in 2D via a Riks-type algorithm, Int. J. Non-Linear Mech., Volume 128 (2021), 103628 | DOI
[36] Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial, Optimization, Volume 33 (2021) no. 4, pp. 1063-1082 | DOI | MR
[37] A rate-independent internal friction to describe the hysteretic behavior of pantographic structures under cyclic loads, Mech. Res. Commun., Volume 116 (2021), 103761 | DOI
[38] A variational formulation for one-dimensional linear thermoviscoelasticity, Math. Mech. Complex Syst., Volume 9 (2021) no. 4, pp. 397-412 | DOI | MR | Zbl
[39] A discrete formulation of Kirchhoff rods in large-motion dynamics, Math. Mech. Solids, Volume 25 (2020) no. 5, pp. 1081-1100 | DOI | MR | Zbl
[40] Quantitative analysis of deformation mechanisms in pantographic substructures: experiments and modeling, Contin. Mech. Thermodyn., Volume 31 (2019), pp. 209-223 | DOI | MR
[42] Sur l’équilibre et le mouvement d’un systeme de points matériels sollicités par des forces d’attraction ou de répulsion mutuelle, Exercises de Mathématiques, Volume 3 (1828) no. 1822
[43] The complete works of Gabrio Piola: Volume I, 2014, Springer, 2014 | DOI
[44] Linear elastic trusses leading to continua with exotic mechanical interactions, J. Phys., Conf. Ser., Volume 319 (2011), 012018 | DOI
[45] Truss modular beams with deformation energy depending on higher displacement gradients, Math. Mech. Solids, Volume 8 (2003) no. 1, pp. 51-73 | DOI | MR | Zbl
[46] Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Contin. Mech. Thermodyn., Volume 31 (2018) no. 4, pp. 851-884 | DOI | MR
[47] Piola’s approach to the equilibrium problem for bodies with second gradient energies. Part I: First gradient theory and differential geometry, Contin. Mech. Thermodyn., Volume 34 (2022) no. 2, pp. 445-474 | DOI | MR
[48] Approach à la Piola for the equilibrium problem of bodies with second gradient energies. Part II: Variational derivation of second gradient equations and their transport, Contin. Mech. Thermodyn., Volume 34 (2022), pp. 1087-1111 | DOI | MR
[49] Identification of a geometrically nonlinear micromorphic continuum via granular micromechanics, Zeitschrift für angewandte Mathematik und Physik, Volume 72 (2021) no. 4, 157, 21 pages | MR | Zbl
[50] Extended granular micromechanics approach: a micromorphic theory of degree , Math. Mech. Solids, Volume 25 (2020) no. 2, pp. 407-429 | DOI | MR | Zbl
[51] How contact interactions may depend on the shape of Cauchy cuts in N-th gradient continua: approach “à la D’Alembert”, Z. Angew. Math. Phys., Volume 63 (2012) no. 6, pp. 1119-1141 | DOI | MR | Zbl
[52] Microstructure in linear elasticity (1963) no. 50 (Technical report) | DOI
[53] Micro-Structure in Linear Elasticity, Arch. Ration. Mech. Anal., Volume 16 (1964) no. 1, pp. 51-78 | DOI | MR | Zbl
[54] Multipolar continuum mechanics, Collected Papers of R. S. Rivlin, Springer, 1997, pp. 1754-1788 | DOI
[55] A new deformation measure for the nonlinear micropolar continuum, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 2, 78, 26 pages | MR | Zbl
[56] On nonlinear dilatational strain gradient elasticity, Contin. Mech. Thermodyn., Volume 33 (2021) no. 4, pp. 1429-1463 | MR
[57] Enriched buckling for beam-lattice metamaterials, Mech. Res. Commun., Volume 103 (2020), 103458 | DOI
[58] Dynamics of Mechanical and Electromechanical Systems, Courier Corporation, 1982
[59] Piezo-electromechanical (PEM) Kirchhoff–Love plates, European Journal of Mechanics-A/Solids, Volume 23 (2004) no. 4, pp. 689-702 | DOI | Zbl
[60] Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: current and upcoming applications, International Journal of Applied Electromagnetics and Mechanics, Volume 47 (2015) no. 4, pp. 1051-1084 | DOI
[61] Pantographic beam: a complete second gradient 1D-continuum in plane, Zeitschrift für angewandte Mathematik und Physik, Volume 70 (2019) no. 5, 135, 24 pages | MR | Zbl
[62] Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium, Proc. R. Soc. Lond., Ser. A, Volume 472 (2016) no. 2185, 20150790 | DOI
[63] Out-of-plane deformation reduction via inelastic hinges in fibrous metamaterials and simplified damage approach, Math. Mech. Solids, Volume 27 (2022) no. 6, pp. 1011-1031 | DOI | MR | Zbl
[64] The effect of local random defects on the response of pantographic sheets, Math. Mech. Solids, Volume 27 (2022) no. 10, pp. 2147-2169 | DOI | MR | Zbl
[65] Local-global DVC analyses confirm theoretical predictions for deformation and damage onset in torsion of pantographic metamaterial, Mech. Mater., Volume 172 (2022), 104379 | DOI
[66] Shear rupture mechanism and dissipation phenomena in bias-extension test of pantographic sheets: Numerical modeling and experiments, Math. Mech. Solids, Volume 27 (2022) no. 10, pp. 2170-2188 | DOI | MR | Zbl
[67] Additive manufacturing introduced substructure and computational determination of metamaterials parameters by means of the asymptotic homogenization, Contin. Mech. Thermodyn., Volume 33 (2021) no. 4, pp. 993-1009 | DOI | MR
[68] Strain-Gradient Modeling and Computation of 3-D Printed Metamaterials for Verifying Constitutive Parameters Determined by Asymptotic Homogenization, Theoretical Analyses, Computations, and Experiments of Multiscale Materials (Advanced Structured Materials), Volume 175, Springer, 2022, pp. 343-357 | DOI | MR | Zbl
[69] Metamaterials with relative displacements in their microstructure: technological challenges in 3D printing, experiments and numerical predictions, Contin. Mech. Thermodyn., Volume 31 (2019), pp. 1015-1034 | DOI
[70] Intertwined microlattices greatly enhance the performance of mechanical metamaterials, Math. Mech. Solids, Volume 24 (2019) no. 8, pp. 2636-2648 | DOI | MR | Zbl
[71] Non-standard Timoshenko beam model for chiral metamaterial: identification of stiffness parameters, Mech. Res. Commun., Volume 103 (2020), 103462 | DOI
[72] Parametric Experimentation to Evaluate Chiral Bars Representative of Granular Motif, International Journal of Mechanical Sciences, Volume 221 (2022), 107184 | DOI
[73] Chiral metamaterial predicted by granular micromechanics: verified with 1D example synthesized using additive manufacturing, Contin. Mech. Thermodyn., Volume 32 (2020), pp. 1497-1513 | DOI | MR
[74] Chirality in 2D Cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics, Int. J. Solids Struct., Volume 202 (2020), pp. 28-38 | DOI
[75] The postulations á la D Alembert and á la Cauchy for higher gradient continuum theories are equivalent: a review of existing results, Proc. R. Soc. Lond., Ser. A, Volume 471 (2015) no. 2183, 20150415, 25 pages | MR | Zbl
[76] Simultaneous assessment of mechanical properties and boundary conditions based on Digital Image Correlation, Exp. Mech., Volume 55 (2015), pp. 139-153 | DOI
[77] Characterization of innovative CFC/Cu joints by full-field measurements and finite elements, Mater. Sci. Eng. A, Volume 595 (2014), pp. 306-317 | DOI
[78] Parameter identification of a second-gradient model for the description of pantographic structures in dynamic regime, Z. Angew. Math. Phys., Volume 72 (2021) no. 6, 190 | MR | Zbl
Cited by Sources:
Comments - Policy