Comptes Rendus
Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model
Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 111-133.

In this work, we develop a posteriori error control for a generalized Boussinesq model in which thermal conductivity and viscosity are temperature-dependent. Therein, the stationary Navier–Stokes equations are coupled with a stationary heat equation. The coupled problem is modeled and solved in a monolithic fashion. The focus is on multigoal-oriented error estimation with the dual-weighted residual method in which an adjoint problem is utilized to obtain sensitivity measures with respect to several goal functionals. The error localization is achieved with the help of a partition-of-unity in a weak formulation, which is specifically convenient for coupled problems as we have at hand. The error indicators are used to employ adaptive algorithms, which are substantiated with several numerical tests such as one benchmark and two further experiments that are motivated from laser material processing. Therein, error reductions and effectivity indices are consulted to establish the robustness and efficiency of our framework.

Received:
Revised:
Accepted:
Online First:
Published online:
DOI: 10.5802/crmeca.160
Keywords: Boussinesq, finite elements, multigoal error control, partition-of-unity dual-weighted residuals, Y-beam splitter

Sven Beuchler 1, 2; Bernhard Endtmayer 1, 2; Johannes Lankeit 1; Thomas Wick 1, 2

1 Leibniz Universität Hannover, Institut für Angewandte Mathematik, Welfengarten 1, 30167 Hannover, Germany
2 Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering – Innovation Across Disciplines), Leibniz Universität Hannover, Germany
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMECA_2023__351_S1_111_0,
     author = {Sven Beuchler and Bernhard Endtmayer and Johannes Lankeit and Thomas Wick},
     title = {Multigoal-oriented a posteriori error control for heated material processing using a generalized {Boussinesq} model},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {111--133},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {351},
     number = {S1},
     year = {2023},
     doi = {10.5802/crmeca.160},
     language = {en},
}
TY  - JOUR
AU  - Sven Beuchler
AU  - Bernhard Endtmayer
AU  - Johannes Lankeit
AU  - Thomas Wick
TI  - Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model
JO  - Comptes Rendus. Mécanique
PY  - 2023
SP  - 111
EP  - 133
VL  - 351
IS  - S1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.160
LA  - en
ID  - CRMECA_2023__351_S1_111_0
ER  - 
%0 Journal Article
%A Sven Beuchler
%A Bernhard Endtmayer
%A Johannes Lankeit
%A Thomas Wick
%T Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model
%J Comptes Rendus. Mécanique
%D 2023
%P 111-133
%V 351
%N S1
%I Académie des sciences, Paris
%R 10.5802/crmeca.160
%G en
%F CRMECA_2023__351_S1_111_0
Sven Beuchler; Bernhard Endtmayer; Johannes Lankeit; Thomas Wick. Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 111-133. doi : 10.5802/crmeca.160. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.160/

[1] R. Temam Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publication, 343, American Mathematical Society, 2001

[2] Giovanni P. Galdi An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011 | Zbl

[3] Vivette Girault; P.-A. Raviart Finite Element method for the Navier-Stokes equations, Computer Series in Computational Mathematics, 5, Springer, 1986 | DOI | Zbl

[4] Roland Glowinski; Patrick Le Tallec Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9, Society for Industrial and Applied Mathematics, 1989 | DOI | Zbl

[5] Roland Glowinski Finite element methods for incompressible viscous flow, Numerical Methods for Fluids (Part 3) (Handbook of Numerical Analysis), Volume 9, Elsevier, 2003, pp. 3-1176 | DOI | Zbl

[6] Roland Glowinski; Jacques F. Periaux Numerical methods for nonlinear problems in fluid dynamics, INRIA Conference on Supercomputing: State-of-the-Art, Elsevier (1987), pp. 381-479 | Zbl

[7] M. O. Bristeau; Roland Glowinski; Jacques F. Periaux Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flows, Comput. Phys. Rep., Volume 6 (1987), pp. 73-187 | DOI

[8] Rolf Rannacher Finite Element Methods for the Incompressible Navier-Stokes Equations, Fundamental Directions in Mathematical Fluid Mechanics (Giovanni P. Galdi; John G. Heywood; Rolf Rannacher, eds.), Birkhäuser, 2000, pp. 191-293 | DOI | Zbl

[9] Stefan Turek Efficient solvers for incompressible flow problems, Letures Notes in Computational Science and Engineering, 6, Springer, 1999 | DOI

[10] Stefan Turek; Ludmila Rivkind; Jaroslav Hron; Roland Glowinski Numerical analysis of a new time-stepping θ-scheme for incompressible flow simulations (2005) (Dedicated to David Gottlieb on the occasion of his 60th anniversary) (Technical report)

[11] John G. Heywood; Rolf Rannacher Finite-Element Approximation of the Nonstationary Navier-Stokes Problem Part IV: Error Analysis for Second-Order Time Discretization, SIAM J. Numer. Anal., Volume 27 (1990) no. 2, pp. 353-384 | DOI | Zbl

[12] Philip G. Drazin; William H. Reid Hydrodynamic Stability, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1981 | Zbl

[13] Dieter Etling Theoretische Meteorologie, Springer, 2008

[14] Martin Kronbichler; Timo Heister; Wolfgang Bangerth High Accuracy Mantle Convection Simulation through Modern Numerical Methods, Geophys. J. Int., Volume 191 (2012), pp. 12-29 | DOI

[15] Andreas Otto; Michael Schmidt Towards a universal numerical simulation model for laser material processing, Physics Procedia, Volume 5 (2010), pp. 35-46 (Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 1) | DOI

[16] Welm M. Pätzold; Ayhan Demircan; Uwe Morgner Low-loss curved waveguides in polymers written with a femtosecond laser, Opt. Express, Volume 25 (2017) no. 1, pp. 263-270 | DOI

[17] George Y. Chen; Fiorina Piantedosi; Dale Otten; Yvonne Qiongyue Kang; Wen Qi Zhang; Xiaohong Zhou; Tanya M. Monro; David G. Lancaster Femtosecond-laser-written Microstructured Waveguides in BK7 Glass, Sci. Rep., Volume 8 (2018) no. 1, 10377 | DOI

[18] Sebastián A. Lorca; José Luiz Boldrini Stationary Solutions for Generalized Boussinesq Models, J. Differ. Equations, Volume 124 (1996) no. 2, pp. 389-406 | DOI | MR | Zbl

[19] Ralf Hartmann Multitarget error estimation and adaptivity in aerodynamic flow simulations, SIAM J. Sci. Comput., Volume 31 (2008) no. 1, pp. 708-731 | DOI | MR | Zbl

[20] Bernhard Endtmayer; Ulrich Langer; Thomas Wick Multigoal-oriented error estimates for non-linear problems, J. Numer. Math., Volume 27 (2019) no. 4, pp. 215-236 | DOI | MR | Zbl

[21] Bernhard Endtmayer; Ulrich Langer; Ira Neitzel; Thomas Wick; Winnifried Wollner Multigoal-oriented optimal control problems with nonlinear PDE constraints, Comput. Math. Appl., Volume 79 (2020) no. 10, pp. 3001-3026 | DOI | MR | Zbl

[22] Bernhard Endtmayer Multi-goal oriented a posteriori error estimates for nonlinear partial differential equations, Ph. D. Thesis, Johannes Kepler University Linz, Austria (2021)

[23] Sven Beuchler; Bernhard Endtmayer; Thomas Wick Goal oriented error control for stationary incompressible flow coupled to a heat equation, PAMM, Volume 21 (2021) no. 1, e202100151 | DOI

[24] K. Ahuja; B. Endtmayer; M. C. Steinbach; Thomas Wick Multigoal-oriented error estimation and mesh adaptivity for fluid–structure interaction, J. Comput. Appl. Math., Volume 412 (2022), 114315 | DOI | MR | Zbl

[25] Roland Becker; Rolf Rannacher An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer. (2001), pp. 1-102 | DOI | MR | Zbl

[26] Wolfgang Bangerth; Rolf Rannacher Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics, Birkhäuser, 2003 | DOI | Zbl

[27] J. Tinsley Oden; Serge Prudhomme Estimation of Modeling Error in Computational Mechanics, J. Comput. Phys., Volume 182 (2002) no. 2, pp. 496-515 | DOI | MR | Zbl

[28] Maalte Braack; Alexandre Ern A posteriori control of modeling errors and discretization errors, Multiscale Model. Simul., Volume 1 (2003) no. 2, pp. 221-238 | DOI | MR | Zbl

[29] Rolf Rannacher; Jevgeni Vihharev Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors, J. Numer. Math., Volume 21 (2013) no. 1, pp. 23-61 | MR | Zbl

[30] Bernhard Endtmayer; Ulrich Langer; Thomas Wick Reliability and Efficiency of DWR-Type A Posteriori Error Estimates with Smart Sensitivity Weight Recovering, Comput. Methods Appl. Math., Volume 21 (2021) no. 2, pp. 351-371 | DOI | MR | Zbl

[31] Thomas Richter; Thomas Wick Variational localizations of the dual weighted residual estimator, J. Comput. Appl. Math., Volume 279 (2015), pp. 192-208 | DOI | MR | Zbl

[32] B. Endtmayer; Ulrich Langer; Thomas Wick Two-Side a Posteriori Error Estimates for the Dual-Weighted Residual Method, SIAM J. Sci. Comput., Volume 42 (2020) no. 1, p. A371-A394 | DOI | MR | Zbl

[33] Svante Arrhenius Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, Zeitschrift für Physikalische Chemie, Volume 4U (1889) no. 1, pp. 226-248 | DOI

[34] Svante Arrhenius Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte, Zeitschrift für Physikalische Chemie, Volume 4U (1889) no. 1, pp. 96-116 | DOI

[35] J De Guzman Relation between fluidity and heat of fusion, Anales Soc. Espan. Fis. Y. Quim, Volume 11 (1913), pp. 353-362

[36] C. V. Raman A theory of the viscosity of liquids, Nature, Volume 111 (1923) no. 2790, pp. 532-533 | DOI

[37] E. N. da C. Andrade LVIII. A theory of the viscosity of liquids.—Part II, London, Edinburgh Dublin Philos. Mag. J. Sci., Volume 17 (1934) no. 113, pp. 698-732 | DOI

[38] A. G. Ward The viscosity of pure liquids, Trans. Faraday Soc., Volume 33 (1937), pp. 88-97 | DOI

[39] R. Ben Haj-Kacem; N. Ouerfelli; J. V. Herráez; M. Guettari; H. Hamda; M. Dallel Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis, Fluid Phase Equilib., Volume 383 (2014), pp. 11-20 | DOI

[40] K. R. Rajagopal; M. Ruzicka; A. R. Srinivasa On the Oberbeck–Boussinesq approximation, Math. Models Methods Appl. Sci., Volume 6 (1996) no. 8, pp. 1157-1167 | DOI | MR | Zbl

[41] Radyadour Kh. Zeytounian Joseph Boussinesq and his approximation: a contemporary view, C. R. Méc. Acad. Sci. Paris, Volume 331 (2003) no. 8, pp. 575-586 | Zbl

[42] Telma Guerra; Adélia Sequeira; Jorge Tiago Existence of optimal boundary control for the Navier–Stokes equations with mixed boundary conditions, Port. Math. (N.S.), Volume 72 (2015) no. 2-3, pp. 267-283 | DOI | MR | Zbl

[43] Philippe G. Ciarlet The finite element method for elliptic problems, North-Holland, 1980

[44] Daniel Arndt; Wolfgang Bangerth; Thomas C. Clevenger; Denis Davydov; Marc Fehling; Daniel Garcia-Sanchez; Graham Harper; Timo Heister; Luca Heltai; Martin Kronbichler; Ross Maguire Kynch; Matthias Maier; Jean-Paul Pelteret; Bruno Turcksin; David Wells The deal.II Library, Version 9.1, J. Numer. Math., Volume 27 (2019), pp. 203-213 | DOI | MR | Zbl

[45] Daniel Arndt; Wolfgang Bangerth; Denis Davydov; Timo Heister; Luca Heltai; Martin Kronbichler; Matthias Maier; Jean-Paul Pelteret; Bruno Turcksin; David Wells The deal.II finite element library: Design, features, and insights, Comput. Math. Appl. (2020) | DOI | Zbl

[46] Timothy A. Davis; Iain S. Duff An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., Volume 18 (1997) no. 1, pp. 140-158 | DOI | MR | Zbl

[47] Roland Becker; Rolf Rannacher Weighted a posteriori error control in FE methods, ENUMATH’97 (H. G. Bock et al., eds.), World Scientific (1996), pp. 1-16

[48] Dominik Meidner; Rolf Rannacher; Jevgeni Vihharev Goal-oriented error control of the iterative solution of finite element equations, J. Numer. Math., Volume 17 (2009) no. 2, pp. 143-172 | DOI | MR

[49] Vít Dolejší; Ondřej Bartoš; Filip Roskovec Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors, Comput. Math. Appl., Volume 93 (2021), pp. 178-198 | DOI | MR | Zbl

[50] Freddi Tröltzsch Optimale Steuerung partieller Differentialgleichungen-Theorie, Verfahren und Anwendungen, Vieweg und Teubner; Springer, 2009 | DOI

[51] Michael Hinze; René Pinnau; Michael Ulbrich; Stefan Ulbrich Optimization with PDE constraints, Mathematical modelling: theory and applications, Springer, 2009 no. 23 | Zbl

[52] Grégoire Allaire A review of adjoint methods for sensitivity analysis, uncertainty quantification and optimization in numerical codes, Ingénieurs de l’Automobile, SIA, Volume 836 (2015), pp. 33-36 (HAL Id: hal-01242950)

[53] Grégoire Allaire Conception optimale de structures, Mathematiques et applications, 58, Springer, 2006 | Zbl

[54] Marius Paul Bruchhäuser; Kristina Schwegler; Markus Bause Dual weighted residual based error control for nonstationary convection-dominated equations: potential or ballast?, Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018 (Letures Notes in Computational Science and Engineering), Volume 135, Springer, 2020, pp. 1-17 | DOI | MR

[55] Maalte Braack; Thomas Richter Solutions of 3D Navier–-Stokes benchmark problems with adaptive finite elements, Comput. Fluids, Volume 35 (2006) no. 4, pp. 372-392 | DOI | Zbl

[56] Graham F. Carey; John T. Oden Finite Elements. Computational Aspects, The Texas Finite Element Series, III, Prentice-Hall, 1984 | Zbl

[57] Werner C. Rheinboldt; Charles K. Mesztenyi On a data structure for adaptive finite element mesh refinements, ACM Trans. Math. Softw., Volume 6 (1980) no. 2, pp. 166-187 | DOI | Zbl

[58] Wolfgang Bangerth; Oliver Kayser-Herold Data structures and requirements for hp finite element software, ACM Trans. Math. Softw., Volume 36 (2009) no. 1, 4, p. 31 | MR | Zbl

[59] Bernhard Endtmayer; Ulrich Langer; JP Thiele; Thomas Wick Hierarchical DWR Error Estimates for the Navier-Stokes Equations: h and p Enrichment, Numerical Mathematics and Advanced Applications ENUMATH 2019 (Lecture Notes in Computational Science and Engineering), Volume 139, Springer, 2021, pp. 363-372 | DOI | MR | Zbl

[60] Ralf Hartmann; Paul Houston Goal-oriented a posteriori error estimation for multiple target functionals, Hyperbolic problems: theory, numerics, applications, Springer, 2003, pp. 579-588 | MR | Zbl

[61] Donald Estep; Michael Holst; Mats Larson Generalized Green’s Functions and the Effective Domain of Influence, SIAM J. Sci. Comput., Volume 26 (2005) no. 4, pp. 1314-1339 | DOI | MR | Zbl

[62] D. Pardo Multigoal-oriented adaptivity for hp-finite element methods, Procedia Computer Science, Volume 1 (2010) no. 1, pp. 1953-1961 | DOI

[63] J. Alvarez-Aramberri; D. Pardo; H. Barucq Inversion of Magnetotelluric Measurements Using Multigoal Oriented hp-adaptivity, Procedia Computer Science, Volume 18 (2013), pp. 1564-1573 | DOI

[64] Kenan Kergrene; Serge Prudhomme; Ludovic Chamoin; Marc Laforest A new goal-oriented formulation of the finite element method, Comput. Methods Appl. Mech. Eng., Volume 327 (2017), pp. 256-276 | DOI | MR | Zbl

[65] Kenan Kergrene A Goal-Oriented Finite Element Method and Its Extension to PGD Reduced-Order Modeling, Ph. D. Thesis, Ecole Polytechnique, Montreal, (Canada) (2018)

[66] Bernhard Endtmayer; Thomas Wick A Partition-of-Unity Dual-Weighted Residual Approach for Multi-Objective Goal Functional Error Estimation Applied to Elliptic Problems, Comput. Methods Appl. Math., Volume 17 (2017) no. 2, pp. 575-599 | DOI | MR | Zbl

[67] M. Schäfer; Stefan Turek; F. Durst; E. Krause; Rolf Rannacher Benchmark computations of laminar flow around a cylinder, Flow simulation with high-performance computers II (Notes on Numerical Fluid Mechanics), Volume 48, Springer, 1996, pp. 547-566 | DOI

[68] Dmitrii Perevoznik; Ayhan Tajalli; David Zuber; Welm M. Pätzold; Ayhan Demircan; Uwe Morgner Writing 3D Waveguides With Femtosecond Pulses in Polymers, J. Lightwave Technol., Volume 39 (2021) no. 13, pp. 4390-4394 | DOI

[69] Bernhard Endtmayer; Ulrich Langer; Thomas Wick Multiple goal-oriented error estimates applied to 3d non-linear problems, PAMM, Volume 18 (2018) no. 1, e201800048 | DOI

Cited by Sources:

Comments - Policy