In this work, we develop a posteriori error control for a generalized Boussinesq model in which thermal conductivity and viscosity are temperature-dependent. Therein, the stationary Navier–Stokes equations are coupled with a stationary heat equation. The coupled problem is modeled and solved in a monolithic fashion. The focus is on multigoal-oriented error estimation with the dual-weighted residual method in which an adjoint problem is utilized to obtain sensitivity measures with respect to several goal functionals. The error localization is achieved with the help of a partition-of-unity in a weak formulation, which is specifically convenient for coupled problems as we have at hand. The error indicators are used to employ adaptive algorithms, which are substantiated with several numerical tests such as one benchmark and two further experiments that are motivated from laser material processing. Therein, error reductions and effectivity indices are consulted to establish the robustness and efficiency of our framework.
Revised:
Accepted:
Online First:
Published online:
Sven Beuchler 1, 2; Bernhard Endtmayer 1, 2; Johannes Lankeit 1; Thomas Wick 1, 2
@article{CRMECA_2023__351_S1_111_0, author = {Sven Beuchler and Bernhard Endtmayer and Johannes Lankeit and Thomas Wick}, title = {Multigoal-oriented a posteriori error control for heated material processing using a generalized {Boussinesq} model}, journal = {Comptes Rendus. M\'ecanique}, pages = {111--133}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.160}, language = {en}, }
TY - JOUR AU - Sven Beuchler AU - Bernhard Endtmayer AU - Johannes Lankeit AU - Thomas Wick TI - Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model JO - Comptes Rendus. Mécanique PY - 2023 SP - 111 EP - 133 VL - 351 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.160 LA - en ID - CRMECA_2023__351_S1_111_0 ER -
%0 Journal Article %A Sven Beuchler %A Bernhard Endtmayer %A Johannes Lankeit %A Thomas Wick %T Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model %J Comptes Rendus. Mécanique %D 2023 %P 111-133 %V 351 %N S1 %I Académie des sciences, Paris %R 10.5802/crmeca.160 %G en %F CRMECA_2023__351_S1_111_0
Sven Beuchler; Bernhard Endtmayer; Johannes Lankeit; Thomas Wick. Multigoal-oriented a posteriori error control for heated material processing using a generalized Boussinesq model. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 111-133. doi : 10.5802/crmeca.160. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.160/
[1] Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publication, 343, American Mathematical Society, 2001
[2] An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Springer, 2011 | Zbl
[3] Finite Element method for the Navier-Stokes equations, Computer Series in Computational Mathematics, 5, Springer, 1986 | DOI | Zbl
[4] Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM Studies in Applied Mathematics, 9, Society for Industrial and Applied Mathematics, 1989 | DOI | Zbl
[5] Finite element methods for incompressible viscous flow, Numerical Methods for Fluids (Part 3) (Handbook of Numerical Analysis), Volume 9, Elsevier, 2003, pp. 3-1176 | DOI | Zbl
[6] Numerical methods for nonlinear problems in fluid dynamics, INRIA Conference on Supercomputing: State-of-the-Art, Elsevier (1987), pp. 381-479 | Zbl
[7] Numerical methods for the Navier–Stokes equations. Applications to the simulation of compressible and incompressible viscous flows, Comput. Phys. Rep., Volume 6 (1987), pp. 73-187 | DOI
[8] Finite Element Methods for the Incompressible Navier-Stokes Equations, Fundamental Directions in Mathematical Fluid Mechanics (Giovanni P. Galdi; John G. Heywood; Rolf Rannacher, eds.), Birkhäuser, 2000, pp. 191-293 | DOI | Zbl
[9] Efficient solvers for incompressible flow problems, Letures Notes in Computational Science and Engineering, 6, Springer, 1999 | DOI
[10] Numerical analysis of a new time-stepping -scheme for incompressible flow simulations (2005) (Dedicated to David Gottlieb on the occasion of his 60th anniversary) (Technical report)
[11] Finite-Element Approximation of the Nonstationary Navier-Stokes Problem Part IV: Error Analysis for Second-Order Time Discretization, SIAM J. Numer. Anal., Volume 27 (1990) no. 2, pp. 353-384 | DOI | Zbl
[12] Hydrodynamic Stability, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, 1981 | Zbl
[13] Theoretische Meteorologie, Springer, 2008
[14] High Accuracy Mantle Convection Simulation through Modern Numerical Methods, Geophys. J. Int., Volume 191 (2012), pp. 12-29 | DOI
[15] Towards a universal numerical simulation model for laser material processing, Physics Procedia, Volume 5 (2010), pp. 35-46 (Laser Assisted Net Shape Engineering 6, Proceedings of the LANE 2010, Part 1) | DOI
[16] Low-loss curved waveguides in polymers written with a femtosecond laser, Opt. Express, Volume 25 (2017) no. 1, pp. 263-270 | DOI
[17] Femtosecond-laser-written Microstructured Waveguides in BK7 Glass, Sci. Rep., Volume 8 (2018) no. 1, 10377 | DOI
[18] Stationary Solutions for Generalized Boussinesq Models, J. Differ. Equations, Volume 124 (1996) no. 2, pp. 389-406 | DOI | MR | Zbl
[19] Multitarget error estimation and adaptivity in aerodynamic flow simulations, SIAM J. Sci. Comput., Volume 31 (2008) no. 1, pp. 708-731 | DOI | MR | Zbl
[20] Multigoal-oriented error estimates for non-linear problems, J. Numer. Math., Volume 27 (2019) no. 4, pp. 215-236 | DOI | MR | Zbl
[21] Multigoal-oriented optimal control problems with nonlinear PDE constraints, Comput. Math. Appl., Volume 79 (2020) no. 10, pp. 3001-3026 | DOI | MR | Zbl
[22] Multi-goal oriented a posteriori error estimates for nonlinear partial differential equations, Ph. D. Thesis, Johannes Kepler University Linz, Austria (2021)
[23] Goal oriented error control for stationary incompressible flow coupled to a heat equation, PAMM, Volume 21 (2021) no. 1, e202100151 | DOI
[24] Multigoal-oriented error estimation and mesh adaptivity for fluid–structure interaction, J. Comput. Appl. Math., Volume 412 (2022), 114315 | DOI | MR | Zbl
[25] An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer. (2001), pp. 1-102 | DOI | MR | Zbl
[26] Adaptive Finite Element Methods for Differential Equations, Lectures in Mathematics, Birkhäuser, 2003 | DOI | Zbl
[27] Estimation of Modeling Error in Computational Mechanics, J. Comput. Phys., Volume 182 (2002) no. 2, pp. 496-515 | DOI | MR | Zbl
[28] A posteriori control of modeling errors and discretization errors, Multiscale Model. Simul., Volume 1 (2003) no. 2, pp. 221-238 | DOI | MR | Zbl
[29] Adaptive finite element analysis of nonlinear problems: balancing of discretization and iteration errors, J. Numer. Math., Volume 21 (2013) no. 1, pp. 23-61 | MR | Zbl
[30] Reliability and Efficiency of DWR-Type A Posteriori Error Estimates with Smart Sensitivity Weight Recovering, Comput. Methods Appl. Math., Volume 21 (2021) no. 2, pp. 351-371 | DOI | MR | Zbl
[31] Variational localizations of the dual weighted residual estimator, J. Comput. Appl. Math., Volume 279 (2015), pp. 192-208 | DOI | MR | Zbl
[32] Two-Side a Posteriori Error Estimates for the Dual-Weighted Residual Method, SIAM J. Sci. Comput., Volume 42 (2020) no. 1, p. A371-A394 | DOI | MR | Zbl
[33] Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren, Zeitschrift für Physikalische Chemie, Volume 4U (1889) no. 1, pp. 226-248 | DOI
[34] Über die Dissociationswärme und den Einfluss der Temperatur auf den Dissociationsgrad der Elektrolyte, Zeitschrift für Physikalische Chemie, Volume 4U (1889) no. 1, pp. 96-116 | DOI
[35] Relation between fluidity and heat of fusion, Anales Soc. Espan. Fis. Y. Quim, Volume 11 (1913), pp. 353-362
[36] A theory of the viscosity of liquids, Nature, Volume 111 (1923) no. 2790, pp. 532-533 | DOI
[37] LVIII. A theory of the viscosity of liquids.—Part II, London, Edinburgh Dublin Philos. Mag. J. Sci., Volume 17 (1934) no. 113, pp. 698-732 | DOI
[38] The viscosity of pure liquids, Trans. Faraday Soc., Volume 33 (1937), pp. 88-97 | DOI
[39] Contribution to modeling the viscosity Arrhenius-type equation for some solvents by statistical correlations analysis, Fluid Phase Equilib., Volume 383 (2014), pp. 11-20 | DOI
[40] On the Oberbeck–Boussinesq approximation, Math. Models Methods Appl. Sci., Volume 6 (1996) no. 8, pp. 1157-1167 | DOI | MR | Zbl
[41] Joseph Boussinesq and his approximation: a contemporary view, C. R. Méc. Acad. Sci. Paris, Volume 331 (2003) no. 8, pp. 575-586 | Zbl
[42] Existence of optimal boundary control for the Navier–Stokes equations with mixed boundary conditions, Port. Math. (N.S.), Volume 72 (2015) no. 2-3, pp. 267-283 | DOI | MR | Zbl
[43] The finite element method for elliptic problems, North-Holland, 1980
[44] The deal.II Library, Version 9.1, J. Numer. Math., Volume 27 (2019), pp. 203-213 | DOI | MR | Zbl
[45] The deal.II finite element library: Design, features, and insights, Comput. Math. Appl. (2020) | DOI | Zbl
[46] An unsymmetric-pattern multifrontal method for sparse LU factorization, SIAM J. Matrix Anal. Appl., Volume 18 (1997) no. 1, pp. 140-158 | DOI | MR | Zbl
[47] Weighted a posteriori error control in FE methods, ENUMATH’97 (H. G. Bock et al., eds.), World Scientific (1996), pp. 1-16
[48] Goal-oriented error control of the iterative solution of finite element equations, J. Numer. Math., Volume 17 (2009) no. 2, pp. 143-172 | DOI | MR
[49] Goal-oriented mesh adaptation method for nonlinear problems including algebraic errors, Comput. Math. Appl., Volume 93 (2021), pp. 178-198 | DOI | MR | Zbl
[50] Optimale Steuerung partieller Differentialgleichungen-Theorie, Verfahren und Anwendungen, Vieweg und Teubner; Springer, 2009 | DOI
[51] Optimization with PDE constraints, Mathematical modelling: theory and applications, Springer, 2009 no. 23 | Zbl
[52] A review of adjoint methods for sensitivity analysis, uncertainty quantification and optimization in numerical codes, Ingénieurs de l’Automobile, SIA, Volume 836 (2015), pp. 33-36 (HAL Id: hal-01242950)
[53] Conception optimale de structures, Mathematiques et applications, 58, Springer, 2006 | Zbl
[54] Dual weighted residual based error control for nonstationary convection-dominated equations: potential or ballast?, Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018 (Letures Notes in Computational Science and Engineering), Volume 135, Springer, 2020, pp. 1-17 | DOI | MR
[55] Solutions of 3D Navier–-Stokes benchmark problems with adaptive finite elements, Comput. Fluids, Volume 35 (2006) no. 4, pp. 372-392 | DOI | Zbl
[56] Finite Elements. Computational Aspects, The Texas Finite Element Series, III, Prentice-Hall, 1984 | Zbl
[57] On a data structure for adaptive finite element mesh refinements, ACM Trans. Math. Softw., Volume 6 (1980) no. 2, pp. 166-187 | DOI | Zbl
[58] Data structures and requirements for hp finite element software, ACM Trans. Math. Softw., Volume 36 (2009) no. 1, 4, p. 31 | MR | Zbl
[59] Hierarchical DWR Error Estimates for the Navier-Stokes Equations: h and p Enrichment, Numerical Mathematics and Advanced Applications ENUMATH 2019 (Lecture Notes in Computational Science and Engineering), Volume 139, Springer, 2021, pp. 363-372 | DOI | MR | Zbl
[60] Goal-oriented a posteriori error estimation for multiple target functionals, Hyperbolic problems: theory, numerics, applications, Springer, 2003, pp. 579-588 | MR | Zbl
[61] Generalized Green’s Functions and the Effective Domain of Influence, SIAM J. Sci. Comput., Volume 26 (2005) no. 4, pp. 1314-1339 | DOI | MR | Zbl
[62] Multigoal-oriented adaptivity for hp-finite element methods, Procedia Computer Science, Volume 1 (2010) no. 1, pp. 1953-1961 | DOI
[63] Inversion of Magnetotelluric Measurements Using Multigoal Oriented hp-adaptivity, Procedia Computer Science, Volume 18 (2013), pp. 1564-1573 | DOI
[64] A new goal-oriented formulation of the finite element method, Comput. Methods Appl. Mech. Eng., Volume 327 (2017), pp. 256-276 | DOI | MR | Zbl
[65] A Goal-Oriented Finite Element Method and Its Extension to PGD Reduced-Order Modeling, Ph. D. Thesis, Ecole Polytechnique, Montreal, (Canada) (2018)
[66] A Partition-of-Unity Dual-Weighted Residual Approach for Multi-Objective Goal Functional Error Estimation Applied to Elliptic Problems, Comput. Methods Appl. Math., Volume 17 (2017) no. 2, pp. 575-599 | DOI | MR | Zbl
[67] Benchmark computations of laminar flow around a cylinder, Flow simulation with high-performance computers II (Notes on Numerical Fluid Mechanics), Volume 48, Springer, 1996, pp. 547-566 | DOI
[68] Writing 3D Waveguides With Femtosecond Pulses in Polymers, J. Lightwave Technol., Volume 39 (2021) no. 13, pp. 4390-4394 | DOI
[69] Multiple goal-oriented error estimates applied to 3d non-linear problems, PAMM, Volume 18 (2018) no. 1, e201800048 | DOI
Cited by Sources:
Comments - Policy