We review different models for thin structures using bending as principal mechanism to undergo large deformations. Each model consists of minimizing a fourth order energy, potentially subject to a nonconvex constraint. Equilibrium deformations are approximated using local discontinuous Galerkin finite elements. The discrete energies relies on a discrete Hessian operator defined on discontinuous functions with better approximation properties than the piecewise Hessian. Discrete gradient flows are used to drive the minimization process. They are chosen for their robustness and ability to preserve the nonconvex constraint. Several numerical experiments are presented to showcase the variety of shapes achievable with these models.
Accepté le :
Première publication :
Publié le :
Andrea Bonito 1 ; Diane Guignard 2 ; Angelique Morvant 1
@article{CRMECA_2023__351_S1_181_0, author = {Andrea Bonito and Diane Guignard and Angelique Morvant}, title = {Numerical approximations of thin structure deformations}, journal = {Comptes Rendus. M\'ecanique}, pages = {181--217}, publisher = {Acad\'emie des sciences, Paris}, volume = {351}, number = {S1}, year = {2023}, doi = {10.5802/crmeca.201}, language = {en}, }
TY - JOUR AU - Andrea Bonito AU - Diane Guignard AU - Angelique Morvant TI - Numerical approximations of thin structure deformations JO - Comptes Rendus. Mécanique PY - 2023 SP - 181 EP - 217 VL - 351 IS - S1 PB - Académie des sciences, Paris DO - 10.5802/crmeca.201 LA - en ID - CRMECA_2023__351_S1_181_0 ER -
Andrea Bonito; Diane Guignard; Angelique Morvant. Numerical approximations of thin structure deformations. Comptes Rendus. Mécanique, Volume 351 (2023) no. S1, pp. 181-217. doi : 10.5802/crmeca.201. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.201/
[1] How the Venus flytrap Snaps, Nature, Volume 433 (2005), pp. 421-425 | DOI
[2] Snapping mechanics of the Venus flytrap (Dionaea muscipula), Proc. Natl. Acad. Sci. USA, Volume 117 (2020) no. 27, pp. 16035-16042 | DOI
[3] Differential growth and instability in elastic shells, Phys. Rev. Lett., Volume 94 (2005) no. 19, 198103 | DOI
[4] A geometric theory of growth mechanics, J. Nonlinear Sci., Volume 20 (2010) no. 6, pp. 781-830 | DOI | MR | Zbl
[5] Metric-Induced Wrinkling of a Thin Elastic Sheet, J. Nonlinear Sci., Volume 24 (2014), pp. 1147-1176 | DOI | MR | Zbl
[6] Geometry, analysis, and morphogenesis: Problems and prospects, Bull. Am. Math. Soc., Volume 59 (2021) no. 3, pp. 331-369 | DOI | MR | Zbl
[7] Shaping of elastic sheets by prescription of non-Euclidean metrics, Science, Volume 315 (2007) no. 5815, pp. 1116-1120 | DOI | MR | Zbl
[8] An Experimental Study of Shape Transitions and Energy Scaling in Thin Non-Euclidean Plates, Phys. Rev. Lett., Volume 106 (2011) no. 11, 118303 | DOI
[9] Microfabricating Conjugated Polymer Actuators, Science, Volume 290 (2000) no. 5496, pp. 1540-1545 | DOI
[10] Photolithographically patterned smart hydrogel based bilayer actuators, Polymer, Volume 51 (2010) no. 26, pp. 6093-6098 | DOI
[11] Performative wood: Physically programming the responsive architecture of the HygroScope and HygroSkin projects, Archit. Des., Volume 85 (2015) no. 5, pp. 66-73 | DOI
[12] A methodology for tranferring principles of plant movements to elastic systems in architecture, Comput. Aided Des., Volume 60 (2015), pp. 105-117 | DOI
[13] Origami and Materials Science, Philos. Trans. R. Soc. Lond., Ser. A, Volume 379 (2021) no. 2201, 20200113 | DOI | MR
[14] A Hierarchy of Plate Models Derived from Nonlinear Elasticity by Gamma-Convergence, Arch. Ration. Mech. Anal., Volume 180 (2006) no. 2, pp. 183-236 | DOI | MR | Zbl
[15] The Nonlinear Membrane Model as a Variational Limit of Nonlinear Three-Dimensional Elasticity, J. Math. Pures Appl., Volume 73 (1995), pp. 549-578 | MR | Zbl
[16] Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 2, pp. 173-178 | DOI | Numdam | MR | Zbl
[17] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three‐dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506 | DOI | MR | Zbl
[18] Derivation of Nonlinear Bending Theory for Shells from Three Dimensional Nonlinear Elasticity by Gamma-Convergence, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 8, pp. 697-702 | DOI | Numdam | MR | Zbl
[19] The Föppl–von Kármán Plate Theory as a Low Energy -Limit of Nonlinear Elasticity, C. R. Math. Acad. Sci. Paris, Volume 335 (2002) no. 2, pp. 201-206 | DOI | Numdam | Zbl
[20] Scaling laws for non-Euclidean plates and the isometric immersions of Riemannian metrics, ESAIM, Control Optim. Calc. Var., Volume 17 (2011) no. 4, pp. 1158-1173 | DOI | Numdam | MR | Zbl
[21] Über das Gleichgewicht und die Bewegung einer elastischen Scheibe, J. Reine Angew. Math., Volume 40 (1850), pp. 51-88 | DOI | MR | Zbl
[22] A treatise on the mathematical theory of elasticity, Cambridge University Press, 1927
[23] Elastic theory of unconstrained non-Euclidean plates, J. Mech. Phys. Solids, Volume 57 (2009) no. 4, pp. 762-775 | DOI | MR | Zbl
[24] Plates with Incompatible Prestrain, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 1, pp. 143-181 | DOI | MR | Zbl
[25] On the Role of Curvature in the Elastic Energy of Non-Euclidean Thin Bodies, J. Elasticity, Volume 134 (2019), pp. 149-173 | DOI | MR | Zbl
[26] A homogenized bending theory for prestrained plates, J. Nonlinear Sci., Volume 33 (2022) no. 1, 22 | DOI | MR | Zbl
[27] LDG approximation of large deformations of prestrained plates, J. Comput. Phys., Volume 448 (2022), 110719 | MR | Zbl
[28] Minimal energy configurations of strained multi-layers, Calc. Var. Partial Differ. Equ., Volume 30 (2007) no. 4, pp. 477-497 | DOI | MR | Zbl
[29] Bilayer Plates: Model Reduction, ‐Convergent Finite Element Approximation, and Discrete Gradient Flow, Commun. Pure Appl. Math., Volume 70 (2017) no. 3, pp. 547-589 | DOI | MR | Zbl
[30] Modeling and simulation of thin sheet folding, Interfaces Free Bound., Volume 24 (2022) no. 4, pp. 459-485 | DOI | MR | Zbl
[31] -convergent LDG method for large bending deformations of bilayer plates (2023) (preprint arXiv:2301.03151) | DOI
[32] A Note on the Numerical Approximation of Thin Structures (2023) (in preparation)
[33] Numerical analysis of the LDG method for large deformations of prestrained plates, IMA J. Numer. Anal., Volume 43 (2023) no. 2, pp. 627-662 | DOI | MR | Zbl
[34] Discontinuous Galerkin Approach to Large Bending Deformation of a Bilayer Plate with Isometry Constraint, J. Comput. Phys., Volume 423 (2020), 109785 | MR | Zbl
[35] DG approach to large bending deformations with isometry constraint, Math. Models Methods Appl. Sci., Volume 31 (2021) no. 01, pp. 133-175 | DOI | MR | Zbl
[36] Error Estimates For A Linear Folding Model, IMA J. Numer. Anal. (2023) | DOI
[37] Finite element approximation of large bending isometries, Numer. Math., Volume 124 (2013) no. 3, pp. 415-440 | DOI | MR | Zbl
[38] Stable gradient flow discretizations for simulating bilayer plate bending with isometry and obstacle constraints, IMA J. Numer. Anal., Volume 42 (2021) no. 3, pp. 1903-1928 | DOI | MR | Zbl
[39] Finite element simulation of nonlinear bending models for thin elastic rods and plates, Handbook of Numerical Analysis, Volume 21, Elsevier, 2020, pp. 221-273 | DOI | MR | Zbl
[40] Isometric embedding of Riemannian manifolds in Euclidean spaces, Mathematical Surveys and Monographs, 13, American Mathematical Society, 2006 | Zbl
[41] High dimensionality and -principle in PDE, Bull. Am. Math. Soc., Volume 54 (2017), pp. 247-282 | DOI | MR | Zbl
[42] Isometric Imbeddings, Ann. Math., Volume 60 (1954) no. 3, pp. 383-396 | DOI | MR | Zbl
[43] On -isometric imbeddings. I, Nederl. Akad. Wet., Proc., Ser. A, Volume 58 (1955), pp. 545-556 | Zbl
[44] On -isometric imbeddings. II, Nederl. Akad. Wet., Proc., Ser. A, Volume 58 (1955), pp. 683-689 | MR | Zbl
[45] Disclination-mediated thermo-optical response in nematic glass sheets, Phys. Rev. E, Volume 81 (2010) no. 6, 060701 | DOI
[46] Gaussian curvature from flat elastica sheets, Proc. R. Soc. Lond., Ser. A, Volume 467 (2010) no. 2128, pp. 1121-1140 | MR | Zbl
[47] Thermally responsive rolling of thin gel strips with discrete variations in swelling, Soft Matter, Volume 8 (2012) no. 8, pp. 2375-2381 | DOI
[48] Three-dimensional shape transformations of hydrogel sheets induced by small-scale modulation of internal stresses, Nat. Commun., Volume 4 (2013), 1586 | DOI
[49] Partial Differential Relations, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 13, Springer, 1986 | DOI | Zbl
[50] A Riemannian approach to reduced plate, shell, and rod theories, J. Funct. Anal., Volume 266 (2014), pp. 2989-3039 | DOI | MR | Zbl
[51] Electrochemical muscles: Micromachining fingers and corkscrews, Adv. Mater., Volume 5 (1993) no. 9, pp. 630-632 | DOI
[52] Edge Effects Determine the Direction of Bilayer Bending, Nano Lett., Volume 11 (2011) no. 6, pp. 2280-2285 | DOI
[53] Design of bending multi-layer electroactive polymer actuators, Smart Mater. Struct., Volume 24 (2015) no. 4, 045032 | DOI
[54] Hygroscopically actuated wood elements for weather responsive and self-forming building parts - Facilitating upscaling and complex shape changes, Constr. Build. Mater., Volume 165 (2018), pp. 782-791 | DOI
[55] Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method, SIAM J. Numer. Anal., Volume 48 (2010) no. 2, pp. 734-771 | DOI | MR | Zbl
[56] Mathematical Aspects of Discontinuous Galerkin Methods, Mathématiques & Applications (Berlin), Springer, 2012 | DOI | Zbl
[57] Discrete functional analysis tools for Discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations, Math. Comput., Volume 79 (2010) no. 271, pp. 1303-1330 | DOI | MR | Zbl
[58] A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations, J. Comput. Phys., Volume 131 (1997) no. 2, pp. 267-279 | DOI | MR | Zbl
[59] Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal., Volume 39 (2002) no. 5, pp. 1749-1779 | DOI | MR | Zbl
[60] Discontinuous Galerkin approximations for elliptic problems, Numer. Methods Partial Differ. Equations, Volume 16 (2000) no. 4, pp. 365-378 | DOI | MR
[61] Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Semin. Univ. Hamb., Volume 36 (1971), pp. 9-15 | DOI | Zbl
[62] A method for solving the convex programming problem with convergence rate , Dokl. Akad. Nauk SSSR, Volume 269 (1983) no. 9, pp. 543-547 | MR | Zbl
[63] Introductory Lectures on Convex Optimization: A Basic Course, Applied Optimization, 87, Springer, 2004 | DOI | Zbl
[64] Lectures on convex optimization, Springer Optimization and Its Applications, 137, Springer, 2018 | DOI | Zbl
[65] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems, SIAM J. Imaging Sci., Volume 2 (2009) no. 1, pp. 183-202 | DOI | MR | Zbl
[66] On the convergence of the iterates of “Fast Iterative Shrinkage/Thresholding Algorithm”, J. Optim. Theory Appl., Volume 166 (2015) no. 3, pp. 968-982 | DOI | MR | Zbl
[67] Self-Shaping Curved Folding: A 4D-Printing Method for Fabrication of Self-Folding Curved Crease Structures, Symposium on Computational Fabrication (SCF ’20), ACM Press (2020), 5 | DOI
[68] Starshade Technology Development, 2022 (https://exoplanets.nasa.gov/exep/technology/starshade/)
[69] Space Origami: Make Your Own Starshade, 2021 (https://www.jpl.nasa.gov/edu/learn/project/space-origami-make-your-own-starshade)
Cité par Sources :
Commentaires - Politique