Ce court texte est dédié à la mémoire d’Yves Couder. Nous commençons par décrire brièvement comment quelques expériences qu’il a menées ont mis en évidence des mécanismes fondamentaux à l’oeuvre dans la croissance de digitations visqueuses en mécanique des fluides et, de dendrites cristallines en solidification. Nous rappelons ensuite l’analogie qu’il a soulignée entre les formes des veines sur les feuilles végétales et celles des fractures apparaissant à la surface de gels se desséchant, et comment ces expériences, et d’autres qu’il a conduites, ont souligné le rôle important des forces mécaniques dans le développement biologique. Nous concluons sur l’importance, récemment appréciée, du phénomène de séparation de phase, que les contributions d’Yves ont permis de mieux comprendre, pour l’existence d’organelles intracellulaires sans membrane.
We first describe how some ingenious experiments performed by Yves Couder illuminated the physics of viscous fingering and dendritic growth in solidification. We then recall the analogy he stressed between leaf venation and fractures in drying gels and how this and other results obtained by Yves, greatly contributed to highlight the role of mechanical forces in biological development. Finally, we briefly describe the recently appreciated role of phase separation, a topic with many important contributions of Yves, for the description of membraneless intracellular organelles.
Vincent Hakim 1
@article{CRMECA_2020__348_6-7_627_0, author = {Vincent Hakim}, title = {From growing bubbles and dendrites to biological forms}, journal = {Comptes Rendus. M\'ecanique}, pages = {627--636}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {6-7}, year = {2020}, doi = {10.5802/crmeca.23}, language = {en}, }
Vincent Hakim. From growing bubbles and dendrites to biological forms. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 627-636. doi : 10.5802/crmeca.23. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.23/
[1] The Scientific Papers of Sir Geoffrey Ingram Taylor, Cambridge University Press, 1958
[2] The renormalization group and the expansion, Phys. Rep., Volume 12 (1974) no. 2, pp. 75-199 | DOI
[3] On the nature of turbulence, Commun. Math. Phys., Volume 20 (1971), p. 167 | DOI | MR | Zbl
[4] Quantitative universality for a class of nonlinear transformations, J. Stat. Phys., Volume 19 (1978) no. 1, pp. 25-52 | DOI | MR | Zbl
[5] Intermittent transition to turbulence in dissipative dynamical systems, Commun. Math. Phys., Volume 74 (1980) no. 2, pp. 189-197 | DOI | MR
[6] Roads to turbulence in dissipative dynamical systems, Rev. Mod. Phys., Volume 53 (1981) no. 4, p. 643 | DOI | MR | Zbl
[7] Une expérience de Rayleigh–Bénard de géométrie réduite; multiplication, accrochage et démultiplication de fréquences, Le Journal de Physique Colloques, Volume 41 (1980) no. C3 (C3–51) | DOI
[8] Riedel anomaly and nonlinear effects in Josephson point contacts, J. Appl. Phys., Volume 49 (1978) no. 3, pp. 1200-1207 | DOI
[9] Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., Volume 67 (1991) no. 8, p. 983 | DOI
[10] Energy injection in closed turbulent flows: stirring through boundary layers versus inertial stirring, Phys. Rev. E, Volume 56 (1997) no. 1, p. 427 | DOI
[11] The observation of a shear flow instability in a rotating system with a soap membrane, J. Phys. Lett., Volume 42 (1981) no. 19, pp. 429-431 | DOI
[12] A shear-flow instability in a circular geometry, J. Fluid Mech., Volume 136 (1983), pp. 291-319 | DOI
[13] Experimental and numerical study of vortex couples in two-dimensional flows, J. Fluid Mech., Volume 173 (1986), pp. 225-251 | DOI
[14] On the hydrodynamics of soap films, Physica D, Volume 37 (1989) no. 1–3, pp. 384-405 | DOI
[15] Two-dimensional grid turbulence in a thin liquid film, J. Phys. Lett., Volume 45 (1984) no. 8, pp. 353-360 | DOI
[16] Diffusion-limited aggregation, a kinetic critical phenomenon, Phys. Rev. Lett., Volume 47 (1981) no. 19, p. 1400 | DOI
[17] Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., Volume 52 (1980) no. 1, p. 1 | DOI
[18] Diffusion-limited aggregation and two-fluid displacements in porous media, Phys. Rev. Lett., Volume 52 (1984) no. 18, p. 1621 | DOI
[19] The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. A, Volume 245 (1958) no. 1242, pp. 312-329 | MR | Zbl
[20] Temperature field around a spherical, cylindrical and needle-shaped crystal, growing in a pre-cooled melt, Dokl. Akad. Nauk SSSR, Volume 58 (1947), p. 567
[21] An experimental study of the Saffman–Taylor instability, J. Fluid Mech., Volume 177 (1987), pp. 67-82 | DOI
[22] Dendritic growth in the Saffman–Taylor experiment, Europhys. Lett., Volume 2 (1986) no. 6, p. 437 | DOI
[23] Narrow fingers in the Saffman–Taylor instability, Phys. Rev. A, Volume 34 (1986) no. 6, p. 5175 | DOI
[24] Dynamics and stability of anomalous Saffman–Taylor fingers, Phys. Rev. A, Volume 37 (1988) no. 3, p. 935 | DOI
[25] Dynamics of Curved Fronts, Elsevier, San Diego, 1988 | MR | Zbl
[26] The effect of surface tension on the shape of fingers in a Hele-Shaw cell, J. Fluid Mech., Volume 102 (1981), pp. 455-469 | DOI | Zbl
[27] Fingers in a Hele-Shaw cell with surface tension, Phys. Fluids, Volume 26 (1983) no. 8, pp. 2033-2034 | DOI | MR
[28] Pattern selection in fingered growth phenomena, Adv. Phys., Volume 37 (1988) no. 3, pp. 255-339 | DOI
[29] Controlling singularities in the complex plane: experiments in real space, Phys. Rev. A, Volume 41 (1990) no. 10, p. 5739 | DOI
[30] The Saffman–Taylor instability: from the linear to the circular geometry, Phys. Fluids A, Volume 1 (1989) no. 2, pp. 224-240 | DOI
[31] Self-dilating viscous fingers in wedge-shaped Hele-Shaw cells, Phys. Fluids A, Volume 3 (1991) no. 7, pp. 1687-1690 | DOI | Zbl
[32] Viscous fingering in a wedge, Phys. Rev. A, Volume 44 (1991) no. 6, p. 3673 | DOI
[33] Directional growth in viscous fingering, New Trends in Nonlinear Dynamics and Pattern-Forming Phenomena, Springer, New York, 1990, pp. 327-337 | DOI
[34] Coating flows, Annu. Rev. Fluid Mech., Volume 17 (1985) no. 1, pp. 65-89 | DOI
[35] Dynamical regimes of directional viscous fingering: spatiotemporal chaos and wave propagation, Phys. Rev. Lett., Volume 64 (1990) no. 2, p. 184 | DOI
[36] Solidification microstructures and solid-state parallels: recent developments, future directions, Acta Mater., Volume 57 (2009) no. 4, pp. 941-971 | DOI
[37] Phyllotaxis as a physical self-organized growth process, Phys. Rev. Lett., Volume 68 (1992) no. 13, p. 2098 | DOI
[38] Influence of salt content on crack patterns formed through colloidal suspension desiccation, Phys. Rev. E, Volume 59 (1999) no. 3, p. 3737 | DOI
[39] The leaf venation as formed in a tensorial field, Eur. Phys. J. B-Condensed Matter Complex Systems, Volume 28 (2002) no. 2, pp. 135-138 | DOI
[40] Tensegrity: the architectural basis of cellular mechanotransduction, Annu. Rev. Physiol., Volume 59 (1997) no. 1, pp. 575-599 | DOI
[41] Mechanical induction of twist in the drosophila foregut/stomodeal primordium, Curr. Biol., Volume 13 (2003), pp. 1365-1377 | DOI
[42] et al. Developmental patterning by mechanical signals in arabidopsis, Science, Volume 322 (2008) no. 5908, pp. 1650-1655 | DOI
[43] Forces in tissue morphogenesis and patterning, Cell, Volume 153 (2013) no. 5, pp. 948-962 | DOI
[44] Mechanical forces and growth in animal tissues, Cold Spring Harb. Perspect. Biol., Volume 8 (2016) no. 3 (a019232) | DOI
[45] Side-branch growth in two-dimensional dendrites. I. Experiments, Phys. Rev. E, Volume 71 (2005) no. 3 (031602) | DOI
[46] Liquid–liquid phase separation in biology, Annu. Rev. Cell Dev. Biol., Volume 30 (2014), pp. 39-58 | DOI
[47] Biomolecular condensates: organizers of cellular biochemistry, Nat. Rev. Mol. Cell Biol., Volume 18 (2017) no. 5, pp. 285-298 | DOI
[48] Liquid phase condensation in cell physiology and disease, Science, Volume 357 (2017) no. 6357 (eaaf4382) | DOI
[49] Nonequilibrium raftlike membrane domains under continuous recycling, Phys. Rev. Lett., Volume 95 (2005) no. 16 (168301)
[50] Principles of e-cadherin supramolecular organization in vivo, Curr. Biol., Volume 23 (2013) no. 22, pp. 2197-2207
[51] Formation and stability of synaptic receptor domains, Phys. Rev. Lett., Volume 106 (2011) no. 23 (238104)
[52] Phase transition in postsynaptic densities underlies formation of synaptic complexes and synaptic plasticity, Cell, Volume 166 (2016) no. 5, pp. 1163-1175 | DOI
[53] An aggregation-removal model for the formation and size determination of post-synaptic scaffold domains, PLoS Comput. Biol., Volume 13 (2017) no. 4 (e1005516) | DOI
[54] Evolving models of heterochromatin: from foci to liquid droplets, Mol. Cell, Volume 67 (2017) no. 5, pp. 725-727 | DOI
[55] Phase separation, protein disorder, and enhancer function, Cell, Volume 175 (2018) no. 7, pp. 1723-1725 | DOI
[56] Physical kinetics. Landau and Lifshitz Course of Theoretical Physics, Vol. 10, Pergamon Press, Oxford, 1981
[57] The dynamic synapse, Neuron, Volume 80 (2013) no. 3, pp. 691-703 | DOI
[58] Lifetime of a structure evolving by cluster aggregation and particle loss, and application to postsynaptic scaffold domains, Phys. Rev. E, Volume 101 (2020) no. 1 (012411) | DOI
[59] Suppression of ostwald ripening in active emulsions, Phys. Rev. E, Volume 92 (2015) no. 1 (012317) | DOI
Cité par Sources :
Commentaires - Politique