Comptes Rendus
Morphogenesis, elasticity
Tip growth in morpho-elasticity
Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 613-625.

La croissance biologique génère des contraintes mécaniques qui contribuent à façonner la forme des tissus, des organes et des organismes vivants. En raison de l’extrême complexité des phénomènes de croissance biologique, il est en général impossible de prédire ces formes. Dans certains cas géométriquement simples, par exemple des tissus biologiques minces en croissance quasi-planaire tels que des feuilles, les lois de la mécanique contraignent les formes possibles. Toutefois, l’espace des formes atteignables reste particulièrement vaste. Dans ce compte-rendu, nous nous intéressons au cas particulier des pointes en croissance, que nous décrivons dans le cadre de la théorie de la morpho-élasticité et de la poro-élasticité non-linéaire, et qui partage des similarités frappantes avec deux sujets d’étude classiques en physique : la croissance dendritique et la digitation visqueuse. Les outils de l’analyse complexe sont mobilisés pour montrer qu’une parabole en croissance homogène est stable et ne développe pas de contrainte mécanique. En revanche, la forme de la pointe est fortement affectée par les perturbations du champ de croissance.

Growth of living species generates stresses which ultimately design their shapes. As a consequence, complex shapes, that everybody can observe, remain difficult to predict, even when the growth biology is over-simplified. One way to tackle this question consists in limiting ourselves to quasi-planar objects like leaves in the spring. However, even in this case the diversity of shapes is really vast. Here, we focus on growing tips with the aim to compare their role in elastic growth to classical viscous fingering and dendritic growth. With the help of complex analysis, we show that a parabola under constant growth is free of stress while growing but any growth perturbation will strongly affect its final shape. Two models of finite elasticity are considered: the Neo-Hookean and the poro-elastic model with incompressibility.

Publié le :
DOI : 10.5802/crmeca.27
Mots clés : Nonlinear elasticity, Biological growth, Instabilities, Morphogenesis, Meristem growth

Martine Ben Amar 1, 2 ; Julien Dervaux 3

1 Institut Universitaire de Cancérologie, Faculté de médecine, Sorbonne Université, 91 Bd de l’Hôpital, 75013 Paris, France
2 Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
3 Laboratoire Matière et Systèmes Complexes, UMR 7057, CNRS and Université de Paris, 75013 Paris, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2020__348_6-7_613_0,
     author = {Martine Ben Amar and Julien Dervaux},
     title = {Tip growth in morpho-elasticity},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {613--625},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.27},
     language = {en},
}
TY  - JOUR
AU  - Martine Ben Amar
AU  - Julien Dervaux
TI  - Tip growth in morpho-elasticity
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 613
EP  - 625
VL  - 348
IS  - 6-7
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.27
LA  - en
ID  - CRMECA_2020__348_6-7_613_0
ER  - 
%0 Journal Article
%A Martine Ben Amar
%A Julien Dervaux
%T Tip growth in morpho-elasticity
%J Comptes Rendus. Mécanique
%D 2020
%P 613-625
%V 348
%N 6-7
%I Académie des sciences, Paris
%R 10.5802/crmeca.27
%G en
%F CRMECA_2020__348_6-7_613_0
Martine Ben Amar; Julien Dervaux. Tip growth in morpho-elasticity. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 613-625. doi : 10.5802/crmeca.27. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.27/

[1] Y. Couder Viscous fingering as an archetype for growth patterns, Perspectives in Fluid Dynamics (G. K. Batchelor; H. K. Moffatt; M. G. Worster, eds.), Cambridge University Press, Cambridge, 2000, pp. 53-98

[2] E. Lajeunesse; Y. Couder On the tip-splitting instability of viscous fingers, J. Fluid Mech., Volume 419 (2000), pp. 125-149 | DOI | MR | Zbl

[3] Y. Couder; O. Cardoso; D. Dupuy; P. Tavernier; W. Thom Dendritic growth in the Saffman–Taylor experiment, Eur. Phys. Lett., Volume 2 (1986), pp. 437-443 | DOI

[4] J. S. Langer Dendrites, viscous fingers and the theory of pattern formation, Science, Volume 243 (1989) no. 4895, pp. 1150-1156 | DOI

[5] M. Rabaud; Y. Couder; N. Gerard Dynamics and stability of anomalous Saffman–Taylor fingers, Phys. Rev. A, Volume 37 (1988) no. 3, pp. 935-947 | DOI

[6] M. B. Amar; P. Nassoy; L. LeGoff Physics of growing biological tissues, The complex cross talk between cell activity, growth and resistance, Phil. Trans. R. Soc. Lond. A, Volume 377 (2019) (20180070)

[7] D. Ambrosi; M. B. Amar; C. Cyron; A. D. Simone; A. Goriely; J. Humphrey; E. Kuhl Growth and remodelling of living tissues: perspectives, challenges and opportunities, J. R. Soc. Interface, Volume 16 (2019) no. 157 (20190233) | DOI

[8] S. Tanveer Surprises in viscous fingering, J. Fluid Mech., Volume 409 (2000), pp. 273-308 | DOI | MR | Zbl

[9] E. A. Brener; V. I. Melnikov Pattern selection in two-dimensional dendritic growth, Adv. Phys., Volume 40 (1991), pp. 53-97 | DOI | MR

[10] P. G. S. G. Taylor The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. A, Volume 245 (1958), p. 312 | MR | Zbl

[11] G. P. Ivantsov Temperature field around a spherical, cylindrical, and needle-shaped crystal, growing in a pre-cooled melt, Dokl. Akad. Nauk SSSR, Volume 58 (1947), pp. 567-569

[12] B. Audoly; Y. Pomeau Elasticity and Geometry, Oxford University Press, Oxford, 2010 | Zbl

[13] R. W. Ogden Non-linear Elastic Deformations, Dover Publications and Ellis Horwood Ltd., Chichester, 1984 | Zbl

[14] G. A. Holzapfel Nonlinear Solid Mechanics a Continuum Approach for Engineering, John Wiley & Sons, Chichester, 2000 | Zbl

[15] A. Goriely The Mathematics and and Mechanics of Biological Growth, Springer-Verlag, New York, 2017 | DOI | Zbl

[16] G. Horvay; J. W. Cahn Dendritic and spheroidal growth, Acta Metall., Volume 9 (1961), pp. 695-705 | DOI

[17] J. S. Langer Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., Volume 52 (1980) no. 1, pp. 1-28 | DOI

[18] P. M. Morse; H. Feshbach Methods of Theoretical Physics, McGraw-Hill, New York, 1953 | Zbl

[19] M. A. Biot Surface instability of rubber in compression, Appl. Sci. Res. A, Volume 12 (1963), p. 168 | DOI | Zbl

[20] M. B. Amar; P. Ciarletta Swelling instability of surface-attached gels as a model of tissue growth under geometric constraints, J. Mech. Phys. Solids, Volume 58 (2010), pp. 935-954 | DOI | MR | Zbl

[21] A. L. Barabasi; H. E. Stanley Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, UK, 1995 | Zbl

[22] J. Krug Origins of scale-invariance in growth processes, Adv. Phys., Volume 46 (1997), pp. 139-282 | DOI

[23] A. Cavagna; A. Cimarelli; I. Giardina; G. Parisi; R. Santagati; F. Stefanini; M. Viale Scale-free correlations in starling flocks, Proc. Natl Acad. Sci. USA, Volume 107 (2010), pp. 11865-11870 | DOI

[24] J. Dervaux; J. C. Magniez; A. Libchaber On growth and form of Bacillus subtilis biofilms, Interface Focus, Volume 4 (2014) no. 6 (20130051) | DOI

[25] M. N. Barber; A. Barbieri; A. Angelo; J. Langer Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification, Phys. Rev. A, Volume 36 (1987), pp. 3340-3349 | DOI

[26] M. B. Amar; V. Hakim; M. Mashaal; Y. Couder Self dilating viscous fingers in wedge-shaped Hele-shaw cells, Phys. Fluids A, Volume 3 (1991) no. 7, pp. 1687-1690 | DOI | Zbl

[27] Y. Couder Growth Patterns: From Stable Curved Fronts to Fractal Structures, Chaos, Order and Patterns (P. C. R. Artuso; G. Casati, eds.), Plemum Press, 1991, pp. 203-227 | DOI

[28] S. Li; J. S. Lowengrub; J. Fontana; P. Palffy-Muhoray Control of viscous fingering patterns in a radial Hele-Shaw cell, Phys. Rev. Lett., Volume 102 (2009), p. 1

[29] M. B. Amar Anisotropic radial growth, Euro. Phys. Lett., Volume 16 (1991) no. 4, pp. 367-372 | DOI

[30] W. Hong; X. Zhao; J. Zhou; Z. Suo A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, Volume 56 (2008), pp. 1779-1793 | DOI | Zbl

[31] J. Dervaux; M. B. Amar Buckling condensation in constrained growth, J. Mech. Phys. Solids, Volume 59 (2011), pp. 538-560 | DOI | MR | Zbl

[32] J. Dervaux; Y. Couder; M. A. Guedeau-Boudeville; M. B. Amar Shape transition in artificial tumors: from smooth buckles to singular creases, Phys. Rev. Lett., Volume 107 (2011) (018103) | DOI

[33] E. Sultan; A. Boudaoud The buckling of a swollen thin gel layer bound to a compliant substrate, J. Appl. Mech., Volume 75 (2008) (051002) | DOI

[34] E. Siefert; E. Reyssat; J. Bico; B. Roman Bio-inspired pneumatic shape-morphing elastomers, Nat. Mater., Volume 18 (2019), p. 24 | DOI

[35] M. Pineirua; J. Bico; B. Roman Origami controlled by an electric field, Soft Matter, Volume 6 (2010), pp. 4491-4496 | DOI

Cité par Sources :

Commentaires - Politique