La croissance biologique génère des contraintes mécaniques qui contribuent à façonner la forme des tissus, des organes et des organismes vivants. En raison de l’extrême complexité des phénomènes de croissance biologique, il est en général impossible de prédire ces formes. Dans certains cas géométriquement simples, par exemple des tissus biologiques minces en croissance quasi-planaire tels que des feuilles, les lois de la mécanique contraignent les formes possibles. Toutefois, l’espace des formes atteignables reste particulièrement vaste. Dans ce compte-rendu, nous nous intéressons au cas particulier des pointes en croissance, que nous décrivons dans le cadre de la théorie de la morpho-élasticité et de la poro-élasticité non-linéaire, et qui partage des similarités frappantes avec deux sujets d’étude classiques en physique : la croissance dendritique et la digitation visqueuse. Les outils de l’analyse complexe sont mobilisés pour montrer qu’une parabole en croissance homogène est stable et ne développe pas de contrainte mécanique. En revanche, la forme de la pointe est fortement affectée par les perturbations du champ de croissance.
Growth of living species generates stresses which ultimately design their shapes. As a consequence, complex shapes, that everybody can observe, remain difficult to predict, even when the growth biology is over-simplified. One way to tackle this question consists in limiting ourselves to quasi-planar objects like leaves in the spring. However, even in this case the diversity of shapes is really vast. Here, we focus on growing tips with the aim to compare their role in elastic growth to classical viscous fingering and dendritic growth. With the help of complex analysis, we show that a parabola under constant growth is free of stress while growing but any growth perturbation will strongly affect its final shape. Two models of finite elasticity are considered: the Neo-Hookean and the poro-elastic model with incompressibility.
Martine Ben Amar 1, 2 ; Julien Dervaux 3
@article{CRMECA_2020__348_6-7_613_0, author = {Martine Ben Amar and Julien Dervaux}, title = {Tip growth in morpho-elasticity}, journal = {Comptes Rendus. M\'ecanique}, pages = {613--625}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {6-7}, year = {2020}, doi = {10.5802/crmeca.27}, language = {en}, }
Martine Ben Amar; Julien Dervaux. Tip growth in morpho-elasticity. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 613-625. doi : 10.5802/crmeca.27. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.27/
[1] Viscous fingering as an archetype for growth patterns, Perspectives in Fluid Dynamics (G. K. Batchelor; H. K. Moffatt; M. G. Worster, eds.), Cambridge University Press, Cambridge, 2000, pp. 53-98
[2] On the tip-splitting instability of viscous fingers, J. Fluid Mech., Volume 419 (2000), pp. 125-149 | DOI | MR | Zbl
[3] Dendritic growth in the Saffman–Taylor experiment, Eur. Phys. Lett., Volume 2 (1986), pp. 437-443 | DOI
[4] Dendrites, viscous fingers and the theory of pattern formation, Science, Volume 243 (1989) no. 4895, pp. 1150-1156 | DOI
[5] Dynamics and stability of anomalous Saffman–Taylor fingers, Phys. Rev. A, Volume 37 (1988) no. 3, pp. 935-947 | DOI
[6] Physics of growing biological tissues, The complex cross talk between cell activity, growth and resistance, Phil. Trans. R. Soc. Lond. A, Volume 377 (2019) (20180070)
[7] Growth and remodelling of living tissues: perspectives, challenges and opportunities, J. R. Soc. Interface, Volume 16 (2019) no. 157 (20190233) | DOI
[8] Surprises in viscous fingering, J. Fluid Mech., Volume 409 (2000), pp. 273-308 | DOI | MR | Zbl
[9] Pattern selection in two-dimensional dendritic growth, Adv. Phys., Volume 40 (1991), pp. 53-97 | DOI | MR
[10] The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Proc. R. Soc. Lond. A, Volume 245 (1958), p. 312 | MR | Zbl
[11] Temperature field around a spherical, cylindrical, and needle-shaped crystal, growing in a pre-cooled melt, Dokl. Akad. Nauk SSSR, Volume 58 (1947), pp. 567-569
[12] Elasticity and Geometry, Oxford University Press, Oxford, 2010 | Zbl
[13] Non-linear Elastic Deformations, Dover Publications and Ellis Horwood Ltd., Chichester, 1984 | Zbl
[14] Nonlinear Solid Mechanics a Continuum Approach for Engineering, John Wiley & Sons, Chichester, 2000 | Zbl
[15] The Mathematics and and Mechanics of Biological Growth, Springer-Verlag, New York, 2017 | DOI | Zbl
[16] Dendritic and spheroidal growth, Acta Metall., Volume 9 (1961), pp. 695-705 | DOI
[17] Instabilities and pattern formation in crystal growth, Rev. Mod. Phys., Volume 52 (1980) no. 1, pp. 1-28 | DOI
[18] Methods of Theoretical Physics, McGraw-Hill, New York, 1953 | Zbl
[19] Surface instability of rubber in compression, Appl. Sci. Res. A, Volume 12 (1963), p. 168 | DOI | Zbl
[20] Swelling instability of surface-attached gels as a model of tissue growth under geometric constraints, J. Mech. Phys. Solids, Volume 58 (2010), pp. 935-954 | DOI | MR | Zbl
[21] Fractal Concepts in Surface Growth, Cambridge University Press, Cambridge, UK, 1995 | Zbl
[22] Origins of scale-invariance in growth processes, Adv. Phys., Volume 46 (1997), pp. 139-282 | DOI
[23] Scale-free correlations in starling flocks, Proc. Natl Acad. Sci. USA, Volume 107 (2010), pp. 11865-11870 | DOI
[24] On growth and form of Bacillus subtilis biofilms, Interface Focus, Volume 4 (2014) no. 6 (20130051) | DOI
[25] Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification, Phys. Rev. A, Volume 36 (1987), pp. 3340-3349 | DOI
[26] Self dilating viscous fingers in wedge-shaped Hele-shaw cells, Phys. Fluids A, Volume 3 (1991) no. 7, pp. 1687-1690 | DOI | Zbl
[27] Growth Patterns: From Stable Curved Fronts to Fractal Structures, Chaos, Order and Patterns (P. C. R. Artuso; G. Casati, eds.), Plemum Press, 1991, pp. 203-227 | DOI
[28] Control of viscous fingering patterns in a radial Hele-Shaw cell, Phys. Rev. Lett., Volume 102 (2009), p. 1
[29] Anisotropic radial growth, Euro. Phys. Lett., Volume 16 (1991) no. 4, pp. 367-372 | DOI
[30] A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, Volume 56 (2008), pp. 1779-1793 | DOI | Zbl
[31] Buckling condensation in constrained growth, J. Mech. Phys. Solids, Volume 59 (2011), pp. 538-560 | DOI | MR | Zbl
[32] Shape transition in artificial tumors: from smooth buckles to singular creases, Phys. Rev. Lett., Volume 107 (2011) (018103) | DOI
[33] The buckling of a swollen thin gel layer bound to a compliant substrate, J. Appl. Mech., Volume 75 (2008) (051002) | DOI
[34] Bio-inspired pneumatic shape-morphing elastomers, Nat. Mater., Volume 18 (2019), p. 24 | DOI
[35] Origami controlled by an electric field, Soft Matter, Volume 6 (2010), pp. 4491-4496 | DOI
Cité par Sources :
Commentaires - Politique