Comptes Rendus
Article de recherche
Electrical and Thermal Conductivity of Complex-Shaped Contact Spots
[Conductivité électrique et thermique des tâches de contact de forme complexe]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 195-234.

Cet article étudie la conductivité électrique et thermique de points de contact complexes à la surface d’un demi-espace. Diverses géométries complexes ont été étudiées à l’aide d’une mise en œuvre interne de la méthode des éléments de frontière rapides. Notre étude commence par des points de contact annulaires afin d’évaluer l’impact de la connexité. Nous étudions ensuite les effets de forme sur des points « multi-pétales » présentant une symétrie dièdre et ressemblant à des fleurs, des étoiles et des engrenages. L’analyse culmine avec les formes auto-affines, qui représentent une généralisation multi-échelle des formes multi-pétales. Dans chaque cas, nous introduisons des normalisations appropriées et développons des modèles phénoménologiques. Pour les formes multi-pétales, notre modèle repose sur un seul paramètre géométrique : le nombre normalisé de « pétales ». Cette approche a inspiré la forme du modèle phénoménologique pour les taches auto-affines, qui maintient la cohérence physique et repose sur quatre caractéristiques géométriques : l’écart type, le deuxième moment spectral, le paramètre de Nayak et l’exposant de Hurst. Ces modèles nous ont permis de proposer des estimations de flux pour un nombre infini de pétales et la limite fractale. Cette étude représente une première étape dans la compréhension de la conductivité des interfaces de contact complexes, qui se produisent couramment dans le contact des surfaces rugueuses.

This paper explores the electrical and thermal conductivity of complex contact spots on the surface of a half-space. Employing an in-house Fast Boundary Element Method implementation, various complex geometries were studied. Our investigation begins with annulus contact spots to assess the impact of connectedness. We then study shape effects on “multi-petal” spots exhibiting dihedral symmetry, resembling flowers, stars, and gears. The analysis culminates with self-affine shapes, representing a multiscale generalization of the multi-petal forms. In each case, we introduce appropriate normalizations and develop phenomenological models. For multi-petal shapes, our model relies on a single geometric parameter: the normalized number of “petals”. This approach inspired the form of the phenomenological model for self-affine spots, which maintains physical consistency and relies on four geometric characteristics: standard deviation, second spectral moment, Nayak parameter, and Hurst exponent. As a by product, these models enabled us to suggest flux estimations for an infinite number of petals and the fractal limit. This study represents an initial step into understanding the conductivity of complex contact interfaces, which commonly occur in the contact of rough surfaces.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.266
Keywords: conductivity, flower-shaped spots, self-affine spots, boundary element method, fractal limit
Mots-clés : conductivité, tâches en forme de fleur, tâches auto-affines, méthode des éléments de frontière, limite fractale

Paul Beguin 1 ; Vladislav A. Yastrebov 1

1 MINES Paris, PSL University, Centre des Matériaux, CNRS UMR 7633, Evry, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_195_0,
     author = {Paul Beguin and Vladislav A. Yastrebov},
     title = {Electrical and {Thermal} {Conductivity} of {Complex-Shaped} {Contact} {Spots}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {195--234},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.266},
     language = {en},
}
TY  - JOUR
AU  - Paul Beguin
AU  - Vladislav A. Yastrebov
TI  - Electrical and Thermal Conductivity of Complex-Shaped Contact Spots
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 195
EP  - 234
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.266
LA  - en
ID  - CRMECA_2025__353_G1_195_0
ER  - 
%0 Journal Article
%A Paul Beguin
%A Vladislav A. Yastrebov
%T Electrical and Thermal Conductivity of Complex-Shaped Contact Spots
%J Comptes Rendus. Mécanique
%D 2025
%P 195-234
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.266
%G en
%F CRMECA_2025__353_G1_195_0
Paul Beguin; Vladislav A. Yastrebov. Electrical and Thermal Conductivity of Complex-Shaped Contact Spots. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 195-234. doi : 10.5802/crmeca.266. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.266/

[1] L. Afferrante; G. Carbone; G. Demelio Interacting and coalescing Hertzian asperities: A new multiasperity contact model, Wear, Volume 278 (2012), pp. 28-33 | DOI

[2] K. V. Amuzuga; T. Chaise; A. Duval; D. Nelias Fully coupled resolution of heterogeneous elastic–plastic contact problem, J. Tribol., Volume 138 (2016) no. 2, 021403 | DOI

[3] J. F. Archard Contact and rubbing of flat surfaces, J. Appl. Phys., Volume 24 (1953) no. 8, pp. 981-988 | DOI

[4] J. F. Archard Elastic deformation and the laws of friction, Proc. R. Soc. Lond., Ser. A, Volume 243 (1957) no. 1233, pp. 190-205 | DOI

[5] S. Baydoun; P. Arnaud; S. Fouvry Modelling adhesive wear extension in fretting interfaces: An advection-dispersion-reaction contact oxygenation approach, Tribol. Int., Volume 151 (2020), 106490 | DOI

[6] J. R. Barber Bounds on the electrical resistance between contacting elastic rough bodies, Proc. R. Soc. Lond., Ser. A, Volume 459 (2003) no. 2029, pp. 53-66 | DOI | Zbl

[7] P. Beguin Conductivity of Contact Interfaces: A Multi-Scale Study, Ph. D. Thesis, MINES Paris, PSL University, Paris, France (2024)

[8] J. Besson; R. Foerch Large scale object-oriented finite element code design, Comput. Methods Appl. Mech. Eng., Volume 142 (1997) no. 1-2, pp. 165-187 | DOI | Zbl

[9] E. M. Burghold; Y. Frekers; R. Kneer Determination of time-dependent thermal contact conductance through IR-thermography, Int. J. Therm. Sci., Volume 98 (2015), pp. 148-155 | DOI

[10] A. W. Bush; R. D. Gibson; T. R. Thomas The elastic contact of a rough surface, Wear, Volume 35 (1975) no. 1, pp. 87-111 | DOI

[11] H. Blok The flash temperature concept, Wear, Volume 6 (1963) no. 6, pp. 483-494 | DOI

[12] M. Bonnet Boundary Integral Equation Methods for Solids and Fluids, Meccanica, Volume 34 (1999), pp. 301-302 | DOI

[13] J. Boussinesq Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques, Gauthier-Villars: Paris, 1885

[14] F. P. Bowden; D. Tabor The friction and lubrication of solids, Oxford University Press, 2001 | Zbl

[15] P. Beguin; V. A. Yastrebov Fast-BEM code for Poisson’s equation on a half-space (https://github.com/vyastreb/HBEM, version 1.0)

[16] P. Beguin; V. A. Yastrebov Supplementary material to paper, 2024 (Zenodo, 10.5281/zenodo.10200997)

[17] G. Carbone; F. Bottiglione Asperity contact theories: Do they predict linearity between contact area and load?, J. Mech. Phys. Solids, Volume 56 (2008) no. 8, pp. 2555-2572 | DOI | Zbl

[18] S. Chaillat; L. Desiderio; P. Ciarlet Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels, J. Comput. Phys., Volume 351 (2017), pp. 165-186 | DOI | Zbl

[19] H. S. Carslaw; J. C. Jaeger Conduction of Heat in Solids, Oxford University Press, 1959

[20] C. Campaná; M. H. Müser Practical Green’s function approach to the simulation of elastic semi-infinite solids, Phys. Rev. B, Volume 74 (2006) no. 7, 075420 | DOI

[21] M. G. Cooper; B. B. Mikic; M. M. Yovanovich Thermal contact conductance, Int. J. Heat Mass Transfer, Volume 12 (1969) no. 3, pp. 279-300 | DOI

[22] W. D. Collins On the solution of some axisymmetric boundary value problems by means of integral equations: VIII. Potential problems for a circular annulus, Proc. Edinb. Math. Soc., II. Ser., Volume 13 (1963) no. 3, pp. 235-246 | DOI | Zbl

[23] J. C. Cooke Some further triple integral equation solutions, Proc. Edinb. Math. Soc., II. Ser., Volume 13 (1963) no. 4, pp. 303-316 | DOI | Zbl

[24] R. E. Cuthrell; D. W. Tipping Electric contacts. II. Mechanics of closure for gold contacts, J. Appl. Phys., Volume 44 (1973) no. 10, pp. 4360-4365 | DOI

[25] W. B. Dapp; A. Lücke; B. N. J. Persson; M. H. Müser Self-affine elastic contacts: percolation and leakage, Phys. Rev. Lett., Volume 108 (2012) no. 24, 244301 | DOI

[26] C. J. Dodds; J. D. Robson The description of road surface roughness, J. Sound Vib., Volume 31 (1973) no. 2, pp. 175-183 | DOI | Zbl

[27] V. I. Fabrikant Dirichlet problem for an annular disk, Z. Angew. Math. Phys., Volume 44 (1993) no. 2, pp. 333-347 | DOI | Zbl

[28] L. Frérot; M. Bonnet; J.-F. Molinari; G. Anciaux A Fourier-accelerated volume integral method for elastoplastic contact, Comput. Methods Appl. Mech. Eng., Volume 351 (2019), pp. 951-976 | DOI

[29] C. Fieberg; R. Kneer Determination of thermal contact resistance from transient temperature measurements, Int. J. Heat Mass Transfer, Volume 51 (2008) no. 5-6, pp. 1017-1023 | DOI | Zbl

[30] Y.-F. Gao; A. F. Bower Elastic-plastic contact of a rough surface with Weierstrass profile, Proc. R. Soc. Lond., Ser. A, Volume 462 (2006) no. 2065, pp. 319-348 | DOI | Zbl

[31] L. Grasedyck; W. Hackbusch Construction and arithmetics of H-matrices, Computing, Volume 70 (2003) no. 4, pp. 295-334 | DOI | Zbl

[32] J. A. Greenwood; K. L. Johnson; E. Matsubara A surface roughness parameter in Hertz contact, Wear, Volume 100 (1984) no. 1-3, pp. 47-57 | DOI

[33] L. Grasedyck Adaptive recompression of -matrices for BEM, Computing, Volume 74 (2005) no. 3, pp. 205-223 | DOI | Zbl

[34] J. A. Greenwood A simplified elliptic model of rough surface contact, Wear, Volume 261 (2006) no. 2, pp. 191-200 | DOI

[35] J. A. Greenwood Constriction resistance and the real area of contact, Br. J. Appl. Phys., Volume 17 (1966) no. 12, p. 1621 | DOI

[36] D. L. Goldsby; T. E. Tullis Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates, Science, Volume 334 (2011) no. 6053, pp. 216-218 | DOI

[37] J. A. Greenwood; J. H. Tripp The Elastic Contact of Rough Spheres, J. Appl. Mech., Volume 34 (1967) no. 1, pp. 153-159 | DOI

[38] J. A. Greenwood; J. B. P. Williamson Contact of nominally flat surfaces, Proc. R. Soc. Lond., Ser. A, Volume 295 (1966), pp. 300-319 | DOI

[39] W. Hackbusch Hierarchical Matrices: Algorithms and Analysis, Springer Series in Computational Mathematics, 49, Springer, 2015 | DOI | Zbl

[40] R. Holm Electric Contacts: Theory and Application, Springer, 1957

[41] S. Hyun; L. Pei; J.-F. Molinari; M. O. Robbins Finite-element analysis of contact between elastic self-affine surfaces, Phys. Rev. E, Volume 70 (2004) no. 2, 026117 | DOI

[42] R. L. Jackson; S. H. Bhavnani; T. P. Ferguson A Multiscale Model of Thermal Contact Resistance Between Rough Surfaces, J. Heat Transfer, Volume 130 (2008) no. 8, 081301 | DOI

[43] S. Jacobson; S. Hogmark Surface modifications in tribological contacts, Wear, Volume 266 (2009) no. 3-4, pp. 370-378 | DOI

[44] B. D. Jensen; K. Huang; L. L.-W. Chow; K. Kurabayashi Low-force contact heating and softening using micromechanical switches in diffusive-ballistic electron-transport transition, Appl. Phys. Lett., Volume 86 (2005) no. 2, 023507 | DOI

[45] J. J. Kalker Variational principles of contact elastostatics, J. Inst. Math. Appl., Volume 20 (1977) no. 2, pp. 199-219 | DOI | Zbl

[46] L. Kogut; K. Komvopoulos Electrical contact resistance theory for conductive rough surfaces, J. Appl. Phys., Volume 94 (2003) no. 5, pp. 3153-3162 | DOI

[47] R. Kempers; P. Kolodner; A. Lyons; A. J. Robinson A high-precision apparatus for the characterization of thermal interface materials, Rev. Sci. Instrum., Volume 80 (2009) no. 9, 095111 | DOI

[48] H. Kumano; T. Sawa; T. Hirose Mechanical behavior of bolted joints under steady heat conduction, J. Pressure Vessel Technol., Volume 116 (1994) no. 1, pp. 42-48 | DOI

[49] E. R. Love; W. D. Collins Inequalities for the capacity of an electrified conducting annular disc, Proc. R. Soc. Lond., Ser. A, Volume 74 (1976), pp. 257-270 | DOI

[50] M. A. Lambert; L. S. Fletcher Thermal contact conductance of spherical rough metals, J. Heat Transfer, Volume 119 (1997) no. 4, pp. 684-690 | DOI

[51] A. Majumdar; B. Bhushan Fractal model of elastic-plastic contact between rough surfaces, J. Tribol., Volume 113 (1991) no. 1, pp. 1-11 | DOI

[52] W. Manners; J. A. Greenwood Some observations on Persson’s diffusion theory of elastic contact, Wear, Volume 261 (2006) no. 5-6, pp. 600-610 | DOI

[53] M. V. Murashov; S. D. Panin Numerical modelling of contact heat transfer problem with work hardened rough surfaces, Int. J. Heat Mass Transfer, Volume 90 (2015), pp. 72-80 | DOI

[54] A. Mikrajuddin; F. G. Shi; H. K. Kim; K. Okuyama Size-dependent electrical constriction resistance for contacts of arbitrary size: from Sharvin to Holm limits, Mater. Sci. Semicond. Process., Volume 2 (1999) no. 4, pp. 321-327 | DOI

[55] A. Majumdar; C. L. Tien Fractal characterization and simulation of rough surfaces, Wear, Volume 136 (1990) no. 2, pp. 313-327 | DOI

[56] M. Nakamura Constriction resistance of conducting spots by the boundary element method, IEEE Trans. Compon., Hybrids, Manuf. Technol., Volume 16 (1993) no. 3, pp. 339-343 | DOI

[57] P. R. Nayak Random process model of rough surfaces, J. of Lubrication Tech., Volume 93 (1971), pp. 398-407 | DOI

[58] M. Nakamura; I. Minowa Computer simulation for the conductance of a contact interface, IEEE Trans. Compon., Hybrids, Manuf. Technol., Volume 9 (1986) no. 2, pp. 150-155 | DOI

[59] C. Putignano; G. Carbone; D. Dini Mechanics of rough contacts in elastic and viscoelastic thin layers, Int. J. Solids Struct., Volume 69 (2015), pp. 507-517 | DOI

[60] B. N. J. Persson Theory of rubber friction and contact mechanics, J. Chem. Phys., Volume 115 (2001) no. 8, pp. 3840-3861 | DOI

[61] L. Pei; S. Hyun; J. F. Molinari; M. O. Robbins Finite element modeling of elasto-plastic contact between rough surfaces, J. Mech. Phys. Solids, Volume 53 (2005) no. 11, pp. 2385-2409 | DOI | Zbl

[62] I. A. Polonsky; L. M. Keer A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques, Wear, Volume 231 (1999) no. 2, pp. 206-219 | DOI

[63] F. Pérez-Ràfols; J. S. Van Dokkum; L. Nicola On the interplay between roughness and viscoelasticity in adhesive hysteresis, J. Mech. Phys. Solids, Volume 170 (2023), 105079 | DOI

[64] J. R. Rice Heating and weakening of faults during earthquake slip, J. Geophys. Res. Solid Earth, Volume 111 (2006) no. B5, B05311 | DOI

[65] L. F. Richardson The approximate arithmetical solution by finite differences with an application to stresses in a masonry dam, Phil. Trans. (A), Volume 210 (1910), pp. 307-357 | DOI

[66] S. Fouvry S. Baydoun Explicit formulations of adhesive wear extension in fretting interfaces applying the contact oxygenation concept, Wear, Volume 488 (2022), 204147 | DOI

[67] Y. Sano Effect of space angle on constriction resistance and contact resistance for a point contact, J. Appl. Phys., Volume 58 (1985) no. 7, pp. 2651-2654 | DOI

[68] H. M. Stanley; T. Kato An FFT-based method for rough surface contact, J. Tribol., Volume 119 (1997) no. 3, pp. 481-485 | DOI

[69] P. G. Slade Electrical Contacts: Principles and Applications, CRC Press, 2017

[70] W. R. Smythe The capacitance of a circular annulus, J. Appl. Phys., Volume 22 (1951) no. 12, pp. 1499-1501 | DOI

[71] I. N. Sneddon Fourier Transforms, Dover Books on Mathematics, Courier Corporation, 1995

[72] P. Sadowski; S. Stupkiewicz A model of thermal contact conductance at high real contact area fractions, Wear, Volume 268 (2010) no. 1-2, pp. 77-85 | DOI

[73] T. R. Thomas; S. D. Probert Establishment of contact parameters from surface profiles, J. Phys. D: Appl. Phys., Volume 3 (1970) no. 3, p. 277 | DOI

[74] H. Tada; P. C. Paris; G. R. Irwin The Stress Analysis of Cracks Handbook, American Society of Mechanical Engineer, 2000

[75] K.-N. Tu Recent advances on electromigration in very-large-scale-integration of interconnects, J. Appl. Phys., Volume 94 (2003) no. 9, pp. 5451-5473 | DOI

[76] H. Von Koch Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire, Ark. Mat. Astron. Fys., Volume 1 (1904), pp. 681-704

[77] Y. Watanabe New instrument for measuring contact resistance developed for studying electrical contact phenomena, Wear, Volume 112 (1986) no. 1, pp. 1-15 | DOI

[78] V. A. Yastrebov; G. Anciaux; J.-F. Molinari From infinitesimal to full contact between rough surfaces: evolution of the contact area, Int. J. Solids Struct., Volume 52 (2015), pp. 83-102 | DOI

[79] V. A. Yastrebov; G. Anciaux; J.-F. Molinari The role of the roughness spectral breadth in elastic contact of rough surfaces, J. Mech. Phys. Solids, Volume 107 (2017), pp. 469-493 | DOI

[80] V. A. Yastrebov The elastic contact of rough spheres investigated using a deterministic multi-asperity model, J. Multiscale Model., Volume 10 (2019) no. 1, 1841002 | DOI

[81] V. A. Yastrebov; J. Durand; H. Proudhon; G. Cailletaud Rough surface contact analysis by means of the finite element method and of a new reduced model, C. R. Méc. Acad. Sci. Paris, Volume 339 (2011) no. 7-8, pp. 473-490 | DOI

[82] F. Yamashita; E. Fukuyama; K. Mizoguchi; S. Takizawa; S. Xu; H. Kawakata Scale dependence of rock friction at high work rate, Nature, Volume 528 (2015) no. 7581, pp. 254-257 | DOI

[83] Z-set Z-set: Non-linear material and structure analysis suite, 2023 (http://www.zset-software.com)

[84] O. C. Zienkiewicz; R. L. Taylor Finite element method. Vol. 1: The basis, Butterworth-Heinemann, Oxford, 2000 | Zbl

[85] M. Zou; B. Yu; J. Cai; P. Xu Fractal Model for Thermal Contact Conductance, J. Heat Transfer, Volume 130 (2008) no. 10, 101301 | DOI

Cité par Sources :

Commentaires - Politique