[Conductivité électrique et thermique des tâches de contact de forme complexe]
Cet article étudie la conductivité électrique et thermique de points de contact complexes à la surface d’un demi-espace. Diverses géométries complexes ont été étudiées à l’aide d’une mise en œuvre interne de la méthode des éléments de frontière rapides. Notre étude commence par des points de contact annulaires afin d’évaluer l’impact de la connexité. Nous étudions ensuite les effets de forme sur des points « multi-pétales » présentant une symétrie dièdre et ressemblant à des fleurs, des étoiles et des engrenages. L’analyse culmine avec les formes auto-affines, qui représentent une généralisation multi-échelle des formes multi-pétales. Dans chaque cas, nous introduisons des normalisations appropriées et développons des modèles phénoménologiques. Pour les formes multi-pétales, notre modèle repose sur un seul paramètre géométrique : le nombre normalisé de « pétales ». Cette approche a inspiré la forme du modèle phénoménologique pour les taches auto-affines, qui maintient la cohérence physique et repose sur quatre caractéristiques géométriques : l’écart type, le deuxième moment spectral, le paramètre de Nayak et l’exposant de Hurst. Ces modèles nous ont permis de proposer des estimations de flux pour un nombre infini de pétales et la limite fractale. Cette étude représente une première étape dans la compréhension de la conductivité des interfaces de contact complexes, qui se produisent couramment dans le contact des surfaces rugueuses.
This paper explores the electrical and thermal conductivity of complex contact spots on the surface of a half-space. Employing an in-house Fast Boundary Element Method implementation, various complex geometries were studied. Our investigation begins with annulus contact spots to assess the impact of connectedness. We then study shape effects on “multi-petal” spots exhibiting dihedral symmetry, resembling flowers, stars, and gears. The analysis culminates with self-affine shapes, representing a multiscale generalization of the multi-petal forms. In each case, we introduce appropriate normalizations and develop phenomenological models. For multi-petal shapes, our model relies on a single geometric parameter: the normalized number of “petals”. This approach inspired the form of the phenomenological model for self-affine spots, which maintains physical consistency and relies on four geometric characteristics: standard deviation, second spectral moment, Nayak parameter, and Hurst exponent. As a by product, these models enabled us to suggest flux estimations for an infinite number of petals and the fractal limit. This study represents an initial step into understanding the conductivity of complex contact interfaces, which commonly occur in the contact of rough surfaces.
Révisé le :
Accepté le :
Publié le :
Mots-clés : conductivité, tâches en forme de fleur, tâches auto-affines, méthode des éléments de frontière, limite fractale
Paul Beguin 1 ; Vladislav A. Yastrebov 1
@article{CRMECA_2025__353_G1_195_0, author = {Paul Beguin and Vladislav A. Yastrebov}, title = {Electrical and {Thermal} {Conductivity} of {Complex-Shaped} {Contact} {Spots}}, journal = {Comptes Rendus. M\'ecanique}, pages = {195--234}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.266}, language = {en}, }
Paul Beguin; Vladislav A. Yastrebov. Electrical and Thermal Conductivity of Complex-Shaped Contact Spots. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 195-234. doi : 10.5802/crmeca.266. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.266/
[1] Interacting and coalescing Hertzian asperities: A new multiasperity contact model, Wear, Volume 278 (2012), pp. 28-33 | DOI
[2] Fully coupled resolution of heterogeneous elastic–plastic contact problem, J. Tribol., Volume 138 (2016) no. 2, 021403 | DOI
[3] Contact and rubbing of flat surfaces, J. Appl. Phys., Volume 24 (1953) no. 8, pp. 981-988 | DOI
[4] Elastic deformation and the laws of friction, Proc. R. Soc. Lond., Ser. A, Volume 243 (1957) no. 1233, pp. 190-205 | DOI
[5] Modelling adhesive wear extension in fretting interfaces: An advection-dispersion-reaction contact oxygenation approach, Tribol. Int., Volume 151 (2020), 106490 | DOI
[6] Bounds on the electrical resistance between contacting elastic rough bodies, Proc. R. Soc. Lond., Ser. A, Volume 459 (2003) no. 2029, pp. 53-66 | DOI | Zbl
[7] Conductivity of Contact Interfaces: A Multi-Scale Study, Ph. D. Thesis, MINES Paris, PSL University, Paris, France (2024)
[8] Large scale object-oriented finite element code design, Comput. Methods Appl. Mech. Eng., Volume 142 (1997) no. 1-2, pp. 165-187 | DOI | Zbl
[9] Determination of time-dependent thermal contact conductance through IR-thermography, Int. J. Therm. Sci., Volume 98 (2015), pp. 148-155 | DOI
[10] The elastic contact of a rough surface, Wear, Volume 35 (1975) no. 1, pp. 87-111 | DOI
[11] The flash temperature concept, Wear, Volume 6 (1963) no. 6, pp. 483-494 | DOI
[12] Boundary Integral Equation Methods for Solids and Fluids, Meccanica, Volume 34 (1999), pp. 301-302 | DOI
[13] Application des potentiels à l’étude de l’équilibre et du mouvement des solides élastiques, Gauthier-Villars: Paris, 1885
[14] The friction and lubrication of solids, Oxford University Press, 2001 | Zbl
[15] Fast-BEM code for Poisson’s equation on a half-space (https://github.com/vyastreb/HBEM, version 1.0)
[16] Supplementary material to paper, 2024 (Zenodo, 10.5281/zenodo.10200997)
[17] Asperity contact theories: Do they predict linearity between contact area and load?, J. Mech. Phys. Solids, Volume 56 (2008) no. 8, pp. 2555-2572 | DOI | Zbl
[18] Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels, J. Comput. Phys., Volume 351 (2017), pp. 165-186 | DOI | Zbl
[19] Conduction of Heat in Solids, Oxford University Press, 1959
[20] Practical Green’s function approach to the simulation of elastic semi-infinite solids, Phys. Rev. B, Volume 74 (2006) no. 7, 075420 | DOI
[21] Thermal contact conductance, Int. J. Heat Mass Transfer, Volume 12 (1969) no. 3, pp. 279-300 | DOI
[22] On the solution of some axisymmetric boundary value problems by means of integral equations: VIII. Potential problems for a circular annulus, Proc. Edinb. Math. Soc., II. Ser., Volume 13 (1963) no. 3, pp. 235-246 | DOI | Zbl
[23] Some further triple integral equation solutions, Proc. Edinb. Math. Soc., II. Ser., Volume 13 (1963) no. 4, pp. 303-316 | DOI | Zbl
[24] Electric contacts. II. Mechanics of closure for gold contacts, J. Appl. Phys., Volume 44 (1973) no. 10, pp. 4360-4365 | DOI
[25] Self-affine elastic contacts: percolation and leakage, Phys. Rev. Lett., Volume 108 (2012) no. 24, 244301 | DOI
[26] The description of road surface roughness, J. Sound Vib., Volume 31 (1973) no. 2, pp. 175-183 | DOI | Zbl
[27] Dirichlet problem for an annular disk, Z. Angew. Math. Phys., Volume 44 (1993) no. 2, pp. 333-347 | DOI | Zbl
[28] A Fourier-accelerated volume integral method for elastoplastic contact, Comput. Methods Appl. Mech. Eng., Volume 351 (2019), pp. 951-976 | DOI
[29] Determination of thermal contact resistance from transient temperature measurements, Int. J. Heat Mass Transfer, Volume 51 (2008) no. 5-6, pp. 1017-1023 | DOI | Zbl
[30] Elastic-plastic contact of a rough surface with Weierstrass profile, Proc. R. Soc. Lond., Ser. A, Volume 462 (2006) no. 2065, pp. 319-348 | DOI | Zbl
[31] Construction and arithmetics of H-matrices, Computing, Volume 70 (2003) no. 4, pp. 295-334 | DOI | Zbl
[32] A surface roughness parameter in Hertz contact, Wear, Volume 100 (1984) no. 1-3, pp. 47-57 | DOI
[33] Adaptive recompression of -matrices for BEM, Computing, Volume 74 (2005) no. 3, pp. 205-223 | DOI | Zbl
[34] A simplified elliptic model of rough surface contact, Wear, Volume 261 (2006) no. 2, pp. 191-200 | DOI
[35] Constriction resistance and the real area of contact, Br. J. Appl. Phys., Volume 17 (1966) no. 12, p. 1621 | DOI
[36] Flash heating leads to low frictional strength of crustal rocks at earthquake slip rates, Science, Volume 334 (2011) no. 6053, pp. 216-218 | DOI
[37] The Elastic Contact of Rough Spheres, J. Appl. Mech., Volume 34 (1967) no. 1, pp. 153-159 | DOI
[38] Contact of nominally flat surfaces, Proc. R. Soc. Lond., Ser. A, Volume 295 (1966), pp. 300-319 | DOI
[39] Hierarchical Matrices: Algorithms and Analysis, Springer Series in Computational Mathematics, 49, Springer, 2015 | DOI | Zbl
[40] Electric Contacts: Theory and Application, Springer, 1957
[41] Finite-element analysis of contact between elastic self-affine surfaces, Phys. Rev. E, Volume 70 (2004) no. 2, 026117 | DOI
[42] A Multiscale Model of Thermal Contact Resistance Between Rough Surfaces, J. Heat Transfer, Volume 130 (2008) no. 8, 081301 | DOI
[43] Surface modifications in tribological contacts, Wear, Volume 266 (2009) no. 3-4, pp. 370-378 | DOI
[44] Low-force contact heating and softening using micromechanical switches in diffusive-ballistic electron-transport transition, Appl. Phys. Lett., Volume 86 (2005) no. 2, 023507 | DOI
[45] Variational principles of contact elastostatics, J. Inst. Math. Appl., Volume 20 (1977) no. 2, pp. 199-219 | DOI | Zbl
[46] Electrical contact resistance theory for conductive rough surfaces, J. Appl. Phys., Volume 94 (2003) no. 5, pp. 3153-3162 | DOI
[47] A high-precision apparatus for the characterization of thermal interface materials, Rev. Sci. Instrum., Volume 80 (2009) no. 9, 095111 | DOI
[48] Mechanical behavior of bolted joints under steady heat conduction, J. Pressure Vessel Technol., Volume 116 (1994) no. 1, pp. 42-48 | DOI
[49] Inequalities for the capacity of an electrified conducting annular disc, Proc. R. Soc. Lond., Ser. A, Volume 74 (1976), pp. 257-270 | DOI
[50] Thermal contact conductance of spherical rough metals, J. Heat Transfer, Volume 119 (1997) no. 4, pp. 684-690 | DOI
[51] Fractal model of elastic-plastic contact between rough surfaces, J. Tribol., Volume 113 (1991) no. 1, pp. 1-11 | DOI
[52] Some observations on Persson’s diffusion theory of elastic contact, Wear, Volume 261 (2006) no. 5-6, pp. 600-610 | DOI
[53] Numerical modelling of contact heat transfer problem with work hardened rough surfaces, Int. J. Heat Mass Transfer, Volume 90 (2015), pp. 72-80 | DOI
[54] Size-dependent electrical constriction resistance for contacts of arbitrary size: from Sharvin to Holm limits, Mater. Sci. Semicond. Process., Volume 2 (1999) no. 4, pp. 321-327 | DOI
[55] Fractal characterization and simulation of rough surfaces, Wear, Volume 136 (1990) no. 2, pp. 313-327 | DOI
[56] Constriction resistance of conducting spots by the boundary element method, IEEE Trans. Compon., Hybrids, Manuf. Technol., Volume 16 (1993) no. 3, pp. 339-343 | DOI
[57] Random process model of rough surfaces, J. of Lubrication Tech., Volume 93 (1971), pp. 398-407 | DOI
[58] Computer simulation for the conductance of a contact interface, IEEE Trans. Compon., Hybrids, Manuf. Technol., Volume 9 (1986) no. 2, pp. 150-155 | DOI
[59] Mechanics of rough contacts in elastic and viscoelastic thin layers, Int. J. Solids Struct., Volume 69 (2015), pp. 507-517 | DOI
[60] Theory of rubber friction and contact mechanics, J. Chem. Phys., Volume 115 (2001) no. 8, pp. 3840-3861 | DOI
[61] Finite element modeling of elasto-plastic contact between rough surfaces, J. Mech. Phys. Solids, Volume 53 (2005) no. 11, pp. 2385-2409 | DOI | Zbl
[62] A numerical method for solving rough contact problems based on the multi-level multi-summation and conjugate gradient techniques, Wear, Volume 231 (1999) no. 2, pp. 206-219 | DOI
[63] On the interplay between roughness and viscoelasticity in adhesive hysteresis, J. Mech. Phys. Solids, Volume 170 (2023), 105079 | DOI
[64] Heating and weakening of faults during earthquake slip, J. Geophys. Res. Solid Earth, Volume 111 (2006) no. B5, B05311 | DOI
[65] The approximate arithmetical solution by finite differences with an application to stresses in a masonry dam, Phil. Trans. (A), Volume 210 (1910), pp. 307-357 | DOI
[66] Explicit formulations of adhesive wear extension in fretting interfaces applying the contact oxygenation concept, Wear, Volume 488 (2022), 204147 | DOI
[67] Effect of space angle on constriction resistance and contact resistance for a point contact, J. Appl. Phys., Volume 58 (1985) no. 7, pp. 2651-2654 | DOI
[68] An FFT-based method for rough surface contact, J. Tribol., Volume 119 (1997) no. 3, pp. 481-485 | DOI
[69] Electrical Contacts: Principles and Applications, CRC Press, 2017
[70] The capacitance of a circular annulus, J. Appl. Phys., Volume 22 (1951) no. 12, pp. 1499-1501 | DOI
[71] Fourier Transforms, Dover Books on Mathematics, Courier Corporation, 1995
[72] A model of thermal contact conductance at high real contact area fractions, Wear, Volume 268 (2010) no. 1-2, pp. 77-85 | DOI
[73] Establishment of contact parameters from surface profiles, J. Phys. D: Appl. Phys., Volume 3 (1970) no. 3, p. 277 | DOI
[74] The Stress Analysis of Cracks Handbook, American Society of Mechanical Engineer, 2000
[75] Recent advances on electromigration in very-large-scale-integration of interconnects, J. Appl. Phys., Volume 94 (2003) no. 9, pp. 5451-5473 | DOI
[76] Sur une courbe continue sans tangente, obtenue par une construction géométrique élémentaire, Ark. Mat. Astron. Fys., Volume 1 (1904), pp. 681-704
[77] New instrument for measuring contact resistance developed for studying electrical contact phenomena, Wear, Volume 112 (1986) no. 1, pp. 1-15 | DOI
[78] From infinitesimal to full contact between rough surfaces: evolution of the contact area, Int. J. Solids Struct., Volume 52 (2015), pp. 83-102 | DOI
[79] The role of the roughness spectral breadth in elastic contact of rough surfaces, J. Mech. Phys. Solids, Volume 107 (2017), pp. 469-493 | DOI
[80] The elastic contact of rough spheres investigated using a deterministic multi-asperity model, J. Multiscale Model., Volume 10 (2019) no. 1, 1841002 | DOI
[81] Rough surface contact analysis by means of the finite element method and of a new reduced model, C. R. Méc. Acad. Sci. Paris, Volume 339 (2011) no. 7-8, pp. 473-490 | DOI
[82] Scale dependence of rock friction at high work rate, Nature, Volume 528 (2015) no. 7581, pp. 254-257 | DOI
[83] Z-set: Non-linear material and structure analysis suite, 2023 (http://www.zset-software.com)
[84] Finite element method. Vol. 1: The basis, Butterworth-Heinemann, Oxford, 2000 | Zbl
[85] Fractal Model for Thermal Contact Conductance, J. Heat Transfer, Volume 130 (2008) no. 10, 101301 | DOI
Cité par Sources :
Commentaires - Politique