[Recristallisation dynamique et comportement mécanique de l’alliage de magnésium AZ31 : Contraintes issues d’essais de traction avec analyse EBSD in-situ]
Nous avons réalisé des essais de traction sur des échantillons de Mg AZ31 avec acquisition EBSD in situ à 250°C et 10-3 s-1 pour caractériser l’évolution de la recristallisation dynamique (DRX) et son effet sur le comportement mécanique. Pour étudier toute la gamme de déformation jusqu’à la rupture à 65-67% de déformation ingénieure, des expériences ont été menées avec une acquisition EBSD in situ à des intervalles de déformation de 2-5% et repolissage des échantillons à des intervalles de 15% de déformation. Les observations microstructurales in situ et statistique des propriétés microstructurales documentent une DRX continue avec germination par association de bulging et de rotation des sous-grains à partir de déformations aussi faibles que 6%. Cependant, la microstructure évolue lentement, principalement par le développement de sous-structure (polygonisation), avec une DRX se limitant à des amas isolés, jusqu’à une déformation de 35%. Cette longue période d’incubation est suivie d’une accélération de la DRX, avec une migration plus rapide des joints de grains permettant le développement d’une structure de DRX en collier, dont l’hétérogénéité spatiale contrôle la localisation finale de la déformation à des déformations > 60%. L’évolution microstructurale contraste avec le comportement mécanique global, qui montre une diminution linéaire du taux de durcissement entre 15 et 60% de déformation. La comparaison de l’évolution de la texture observée avec les prédictions par des simulations de plasticité polycristalline sans DRX montre que les changements de texture induits par DRX contrecarrent le durcissement géométrique dû à l’évolution de la texture résultant du glissement de dislocation. Un adoucissement microstructural est néanmoins nécessaire pour compenser le durcissement dû à l’augmentation de la densité de dislocation. L’intensité de cet adoucissement doit augmenter de façon continue avec la déformation pour expliquer la diminution du taux de durcissement entre 15% et 60% de déformation. L’écart apparent entre la cinétique de l’évolution microstructurale et le comportement mécanique implique cependant que l’adoucissement global ne dépend pas uniquement de la fraction volumique recristallisée, mais aussi de son organisation spatiale.
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
We conducted tensile tests on Mg AZ31 samples with in-situ EBSD acquisition at 250°C and 10-3 s-1 to characterize the evolution of dynamic recrystallization (DRX) and its effect on the mechanical behavior. To investigate the entire deformation range up to failure at 65-67% engineering strain, step-wise experiments were conducted with in-situ EBSD acquisition at 2-5% strain intervals. Both in-situ microstructural observations and statistical analysis of microstructural properties document continuous DRX with nucleation by association of bulging and subgrain rotation starting at strains as low as 6%. However, the microstructure evolves slowly, mainly by development of substructure (polygonization), with DRX limited to isolated clusters, until 35% strain. This long incubation period is followed by acceleration of DRX, with faster grain boundary migration allowing for development of a DRX-necklace structure, whose spatial heterogeneity controls the final strain localization at strains > 60%. The microstructural evolution contrasts with the bulk mechanical behavior, which displays a linear decrease in the hardening rate between 15 and 60% strain. Comparison of the observed texture evolution with predictions by polycrystal plasticity simulations without DRX shows that DRX-induced changes in texture counteract the geometrical hardening due to the texture evolution resulting from dislocation glide. Microstructural softening is, nevertheless, required to compensate for hardening due to increase in the dislocation density. The intensity of this softening has to steadily increase with strain to explain the decrease in hardening rate between 15% and 60% strain. The apparent discrepancy between the kinetics of the microstructural evolution and the mechanical behavior implies, however, that the bulk softening does not depend solely on the DRX volume fraction, but also on its spatial organization.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Révisé le :
Accepté le :
Publié le :
Mots-clés : Recristallisation dynamique, alliage Mg, EBSD quasi in-situ, texture
Gaëtan Boissonneau 1 ; Andréa Tommasi 1 ; Fabrice Barou 1 ; Marco Antonio Lopez-Sanchez 2 ; Maurine Montagnat 3

@article{CRMECA_2025__353_G1_235_0, author = {Ga\"etan Boissonneau and Andr\'ea Tommasi and Fabrice Barou and Marco Antonio Lopez-Sanchez and Maurine Montagnat}, title = {Dynamic recrystallization and mechanical behavior of {Mg} alloy {AZ31:} {Constraints} from tensile tests with in-situ {EBSD} analysis}, journal = {Comptes Rendus. M\'ecanique}, pages = {235--258}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.267}, language = {en}, }
TY - JOUR AU - Gaëtan Boissonneau AU - Andréa Tommasi AU - Fabrice Barou AU - Marco Antonio Lopez-Sanchez AU - Maurine Montagnat TI - Dynamic recrystallization and mechanical behavior of Mg alloy AZ31: Constraints from tensile tests with in-situ EBSD analysis JO - Comptes Rendus. Mécanique PY - 2025 SP - 235 EP - 258 VL - 353 PB - Académie des sciences, Paris DO - 10.5802/crmeca.267 LA - en ID - CRMECA_2025__353_G1_235_0 ER -
%0 Journal Article %A Gaëtan Boissonneau %A Andréa Tommasi %A Fabrice Barou %A Marco Antonio Lopez-Sanchez %A Maurine Montagnat %T Dynamic recrystallization and mechanical behavior of Mg alloy AZ31: Constraints from tensile tests with in-situ EBSD analysis %J Comptes Rendus. Mécanique %D 2025 %P 235-258 %V 353 %I Académie des sciences, Paris %R 10.5802/crmeca.267 %G en %F CRMECA_2025__353_G1_235_0
Gaëtan Boissonneau; Andréa Tommasi; Fabrice Barou; Marco Antonio Lopez-Sanchez; Maurine Montagnat. Dynamic recrystallization and mechanical behavior of Mg alloy AZ31: Constraints from tensile tests with in-situ EBSD analysis. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 235-258. doi : 10.5802/crmeca.267. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.267/
[1] Dynamic and Post-Dynamic Recrystallization under Hot, Cold and Severe Plastic Deformation Conditions, Prog. Mater. Sci., Volume 60 (2014), pp. 130-207 | DOI
[2] Recrystallization and Related Annealing Phenomena, Elsevier, 2017 | DOI
[3] A Critical Assessment of Experimental Investigation of Dynamic Recrystallization of Metallic Materials, Mater. Des., Volume 193 (2020), 108873 | DOI
[4] Grain Refinement of Magnesium Alloys by Dynamic Recrystallization (DRX): A Review, J. Mater. Res. Technol., Volume 25 (2023), pp. 7050-7077 | DOI
[5] Texture Evolution during Dynamic Recrystallization in a Magnesium Alloy at 450C, Acta Mater., Volume 67 (2014), pp. 102-115 | DOI
[6] Magnesium: Properties —applications —potential, Mater. Sci. Eng. A, Volume 302 (2001) no. 1, pp. 37-45 | DOI
[7] Superior light metals by texture engineering: Optimized aluminum and magnesium alloys for automotive applications, Acta Mater., Volume 61 (2013) no. 3, pp. 818-843 | DOI
[8] Analysis of Dynamic Recrystallization of Ice from EBSD Orientation Mapping, Front. Earth Sci., Volume 3 (2015) | DOI
[9] Investigation of Nucleation Processes during Dynamic Recrystallization of Ice Using Cryo-EBSD, Philos. Trans. R. Soc. Lond., Ser. A, Volume 375 (2017) no. 2086, 20150345 | DOI
[10] Temperature and strain controls on ice deformation mechanisms: insights from the microstructures of samples deformed to progressively higher strains at , and , C, Cryosphere, Volume 14 (2020) no. 11, pp. 3875-3905 | DOI
[11] Weakening of Rock Salt by Water during Long-Term Creep, Nature, Volume 324 (1986) no. 6097, pp. 554-557 | DOI
[12] Dynamic Recrystallization by Subgrain Rotation in Olivine Revealed by Electron Backscatter Diffraction, Tectonophysics, Volume 815 (2021), 228916 | DOI
[13] Temperature Dependency on the Microscopic Mechanism in the Normal Direction of Wrought AZ31 Sheet under Dynamic Compressive Behavior, Materials, Volume 14 (2021) no. 23, 7436 | DOI
[14] Dynamic Recrystallization during High Temperature Deformation of Magnesium, Mater. Sci. Eng. A, Volume 490 (2008) no. 1-2, pp. 411-420 | DOI
[15] Room Temperature Formability of a Magnesium AZ31 Alloy: Examining the Role of Texture on the Deformation Mechanisms, Mater. Sci. Eng. A, Volume 488 (2008) no. 1-2, pp. 406-414 | DOI
[16] Effect of Grain Boundaries on Texture Formation during Dynamic Recrystallization of Magnesium Alloys, Acta Mater., Volume 128 (2017), pp. 270-283 | DOI
[17] Dynamic Recrystallization in AZ31 Magnesium Alloy, Mater. Sci. Eng. A, Volume 456 (2007) no. 1-2, pp. 52-57 | DOI
[18] Dynamic continuous recrystallization characteristics in two stage deformation of alloy sheet, Mater. Sci. Eng. A, Volume 339 (2003) no. 1-2, pp. 124-132 | DOI
[19] Dynamic Evolution of New Grains in Magnesium Alloy AZ31 during Hot Deformation, Mater. Trans., Volume 44 (2003) no. 1, pp. 197-203 | DOI
[20] Influence of Grain Size on Hot Working Stresses and Microstructures in Mg–3Al–1Zn, Scr. Mater., Volume 51 (2004) no. 1, pp. 19-24 | DOI
[21] et al. Influence of Texture on the Recrystallization Mechanisms in an AZ31 Mg Sheet Alloy at Dynamic Rates, Mater. Sci. Eng. A, Volume 532 (2012), 228916, pp. 528-535 | DOI
[22] Quenched and Annealed Microstructures of Hot Worked Magnesium AZ31, Mater. Trans., Volume 44 (2003) no. 4, pp. 571-577 | DOI
[23] Microstructural Development during Hot Working of Mg-3Al-1Zn, Metall. Mater. Trans. A, Volume 38 (2007) no. 8, pp. 1856-1867 | DOI
[24] Flow Softening, Twinning and Dynamic Recrystallization in AZ31 Magnesium, Mater. Sci. Eng. A, Volume 583 (2013), pp. 242-253 | DOI
[25] Necklace Formation during Dynamic Recrystallization: Mechanisms and Impact on Flow Behavior, Acta Mater., Volume 46 (1998) no. 1, pp. 69-80 | DOI
[26] Modelling Dynamic Recrystallisation in Magnesium Alloy AZ31, Int. J. Plast., Volume 142 (2021), 102995 | DOI
[27] Constitutive Analysis of Mg–Al–Zn Magnesium Alloys during Hot Deformation, Mech. Mater., Volume 77 (2014), pp. 80-85 | DOI
[28] New Insights on the Relationship between Flow Stress Softening and Dynamic Recrystallization Behavior of Magnesium Alloy AZ31B, Mater. Charact., Volume 147 (2019), pp. 173-183 | DOI
[29] A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys, Acta Metall. Mater., Volume 41 (1993) no. 9, pp. 2611-2624 | DOI
[30] Manual for Code – Visco-Plastic Self Consistent (VPSC) – Version 7c, 2009 (https://fr.scribd.com/document/236442768/VPSC7c-Manual) | DOI
[31] Full-Field vs. Homogenization Methods to Predict Microstructure–Property Relations for Polycrystalline Materials, Springer (2011), pp. 393-441 | DOI
[32] Experiment and Crystal Plasticity Analysis on Plastic Deformation of AZ31B Mg Alloy Sheet under Intermediate Temperatures: How Deformation Mechanisms Evolve, Int. J. Plast., Volume 79 (2016), pp. 19-47 | DOI
[33] Investigating the Temperature Dependency of Plastic Deformation in a Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, Volume 725 (2018), pp. 108-118 | DOI
[34] Texture Analysis in Materials Science, Butterworths & Co, 1982, 102995 | DOI
[35] Dynamic Recrystallisation and the Development of Microstructure during the High Temperature Deformation of Magnesium, Acta Metall., Volume 30 (1982) no. 10, pp. 1909-1919 | DOI
[36] A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., Volume 44 (1996) no. 1, pp. 127-136 | DOI
[37] Effect of Forming Conditions on the Softening Behavior in Coarse Grained Structures, Mater. Sci. Eng. A, Volume 528 (2011) no. 19-20, pp. 6163-6172 | DOI
[38] Recrystallization and Related Annealing Phenomena, Elsevier, 2012, 7436 | DOI
[39] On the Role of Long-Range Internal Stresses on Grain Nucleation during Dynamic Discontinuous Recrystallization, Mater. Sci. Eng. A, Volume 546 (2012), 108873, pp. 207-211 | DOI
Cité par Sources :
Commentaires - Politique