Comptes Rendus
Article de recherche
Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely double contrasted media
[Accélération du schéma Eyre–Milton adaptatif pour l’homogénéisation par FFT des milieux à double contraste infini]
Comptes Rendus. Mécanique, Volume 352 (2024), pp. 251-267.

Sab et al. (2024) ont récemment proposé un algorithme itératif basé sur la FFT, appelé Adaptive Eyre–Milton (AEM), pour résoudre l’équation de Lippmann–Schwinger dans le contexte de l’homogénéisation périodique de composites élastiques linéaires à double contraste infini (matériaux hétérogènes avec des lois constitutives linéaires contenant à la fois des pores et des inclusions rigides). Ils ont démontré la convergence linéaire inconditionnelle de ce schéma, quel que soit l’initialisation et le matériau de référence choisis. Cependant, les simulations numériques ont montré que la vitesse de convergence du schéma AEM dépend fortement du choix du matériau de référence. Dans cet article, nous introduisons une nouvelle version du schéma AEM, où le matériau de référence est mis à jour de manière itérative, aboutissant à un schéma rapide et polyvalent, appelé Accelerated Adaptive Eyre–Milton (A2EM). Des simulations numériques avec le schéma A2EM sur des composites élastiques linéaires avec des pores et des inclusions infiniment rigides montrent que, quel que soit le matériau de référence initial choisi, cet algorithme a la même vitesse de convergence que le schéma AEM avec le meilleur choix du matériau de référence.

Sab et al. (2024) have recently proposed an FFT-based iterative algorithm, termed Adaptive Eyre–Milton (AEM), for solving the Lippmann–Schwinger equation in the context of periodic homogenization of infinitely double contrasted linear elastic composites (heterogeneous materials with linear constitutive laws that contain both pores and rigid inclusions). They have demonstrated the unconditional linear convergence of this scheme, regardless of initialization and the chosen reference material. However, numerical simulations have shown that the rate of convergence of AEM strongly depends on the chosen reference material. In this paper, we introduce a new version of the AEM scheme where the reference material is updated iteratively, resulting in a fast and versatile scheme, termed Accelerated Adaptive Eyre–Milton (A2EM). Numerical simulations with A2EM on linear elastic composites with both pores and infinitely rigid inclusions show that, regardless of the initial chosen reference material, this algorithm has the same rate of convergence as AEM with the best choice of reference material.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.269
Keywords: computational homogenization, FFT-based method, iterative scheme, linear elasticity, composite materials
Mot clés : homogénéisation computationnelle, méthode basée sur la FFT, schéma itératif, élasticité linéaire, matériaux composites

Martin Dolbeau 1 ; Jérémy Bleyer 2 ; Karam Sab 2

1 Laboratoire Navier, IPParis ENPC, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
2 Laboratoire Navier, Ecole Nationale des Ponts et Chaussées, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2024__352_G1_251_0,
     author = {Martin Dolbeau and J\'er\'emy Bleyer and Karam Sab},
     title = {Accelerating the {Adaptive} {Eyre{\textendash}Milton} {FFT-based} method for infinitely double contrasted media},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {251--267},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {352},
     year = {2024},
     doi = {10.5802/crmeca.269},
     language = {en},
}
TY  - JOUR
AU  - Martin Dolbeau
AU  - Jérémy Bleyer
AU  - Karam Sab
TI  - Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely double contrasted media
JO  - Comptes Rendus. Mécanique
PY  - 2024
SP  - 251
EP  - 267
VL  - 352
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.269
LA  - en
ID  - CRMECA_2024__352_G1_251_0
ER  - 
%0 Journal Article
%A Martin Dolbeau
%A Jérémy Bleyer
%A Karam Sab
%T Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely double contrasted media
%J Comptes Rendus. Mécanique
%D 2024
%P 251-267
%V 352
%I Académie des sciences, Paris
%R 10.5802/crmeca.269
%G en
%F CRMECA_2024__352_G1_251_0
Martin Dolbeau; Jérémy Bleyer; Karam Sab. Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely double contrasted media. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 251-267. doi : 10.5802/crmeca.269. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.269/

[1] S. Brisard; L. Dormieux FFT-based Methods for the Mechanics of Composites: A General Variational Framework, Comput. Mater. Sci., Volume 49 (2010) no. 3, pp. 663-671 | DOI

[2] C. Bellis; P. Suquet Geometric variational principles for computational homogenization, J. Elasticity, Volume 137 (2019), pp. 119-149 | DOI | Zbl

[3] M. Dolbeau; K. Sab; J. Bleyer Supplementary material to ‘Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely contrasted media’, Zenodo, 2024 | DOI

[4] D. J. Eyre; G. W. Milton A Fast Numerical Scheme for Computing the Response of Composites Using Grid Refinement, Eur. Phys. J. AP, Volume 6 (1999) no. 01, pp. 41-47 | DOI

[5] L. Gélébart; R. Mondon-Cancel Non-Linear Extension of FFT-based Methods Accelerated by Conjugate Gradients to Evaluate the Mechanical Behavior of Composite Materials, Comput. Mater. Sci., Volume 77 (2013), pp. 430-439 | DOI

[6] M. Kabel; T. Böhlke; M. Schneider Efficient Fixed Point and Newton–Krylov Solvers for FFT-based Homogenization of Elasticity at Large Deformations, Comput. Mech., Volume 54 (2014) no. 6, pp. 1497-1514 | DOI | Zbl

[7] J. Korringa Theory of Elastic Constants of Heterogeneous Media, J. Math. Phys., Volume 14 (1973) no. 4, pp. 509-513 | DOI | Zbl

[8] E. Kröner On the Physics and Mathematics of Self-Stresses, Topics in Applied Continuum Mechanics (J. L. Zeman; F. Ziegler, eds.), Springer: Vienna (1974), pp. 22-38 | DOI | Zbl

[9] D. A. Lorenz; Q. Tran-Dinh Non-stationary Douglas–Rachford and alternating direction method of multipliers: adaptive step-sizes and convergence, Comput. Optim. Appl., Volume 74 (2019) no. 1, pp. 67-92 | DOI | Zbl

[10] V. Monchiet; G. Bonnet A Polarization-Based FFT Iterative Scheme for Computing the Effective Properties of Elastic Composites with Arbitrary Contrast, Int. J. Numer. Methods Eng., Volume 89 (2012) no. 11, pp. 1419-1436 | DOI | Zbl

[11] G. W. Milton The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, 2002 | DOI | Zbl

[12] J. C. Michel; H. Moulinec; P. Suquet A Computational Scheme for Linear and Non-Linear Composites with Arbitrary Phase Contrast, Int. J. Numer. Methods Eng., Volume 52 (2001) no. 1-2, pp. 139-160 | DOI

[13] H. Moulinec; F. Silva Comparison of Three Accelerated FFT-based Schemes for Computing the Mechanical Response of Composite Materials, Int. J. Numer. Methods Eng., Volume 97 (2014) no. 13, pp. 960-985 | DOI | Zbl

[14] H. Moulinec; P. Suquet A Fast Numerical Method for Computing the Linear and Nonlinear Mechanical Properties of Composites, C. R. Acad. Sci., Sér. IIA Earth Planet. Sci., Volume 318 (1994) no. 11, pp. 1417-1423 | Zbl

[15] H. Moulinec; P. Suquet A Numerical Method for Computing the Overall Response of Nonlinear Composites with Complex Microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998) no. 1-2, pp. 69-94 | DOI | Zbl

[16] K. Sab; J. Bleyer; S. Brisard; M. Dolbeau An FFT-based adaptive polarization method for infinitely contrasted media with guaranteed convergence, Comput. Methods Appl. Mech. Eng., Volume 427 (2024), 117012 | DOI | Zbl

[17] M. Schneider An FFT-based Fast Gradient Method for Elastic and Inelastic Unit Cell Homogenization Problems, Comput. Methods Appl. Mech. Eng., Volume 315 (2017), pp. 846-866 | DOI | Zbl

[18] M. Schneider On the Barzilai–Borwein Basic Scheme in FFT-based Computational Homogenization, Int. J. Numer. Methods Eng., Volume 118 (2019) no. 8, pp. 482-494 | DOI | Zbl

[19] M. Schneider A Review of Nonlinear FFT-based Computational Homogenization Methods, Acta Mech., Volume 232 (2021) no. 6, pp. 2051-2100 | DOI | Zbl

[20] M. Schneider On non-stationary polarization methods in FFT-based computational micromechanics, Int. J. Numer. Methods Eng., Volume 122 (2021) no. 22, pp. 6800-6821 | DOI | Zbl

[21] M. Schneider; D. Wicht; T. Böhlke On Polarization-Based Schemes for the FFT-based Computational Homogenization of Inelastic Materials, Comput. Mech., Volume 64 (2019) no. 4, pp. 1073-1095 | DOI | Zbl

[22] F. Willot Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. Méc. Acad. Sci. Paris, Volume 343 (2015) no. 3, pp. 232-245 | DOI

[23] R. Zeller; P. H. Dederichs Elastic Constants of Polycrystals, Phys. Status Solidi B Basic Res., Volume 55 (1973) no. 2, pp. 831-842 | DOI

[24] J. Zeman; J. Vondřejc; J. Novák; I. Marek Accelerating a FFT-based Solver for Numerical Homogenization of Periodic Media by Conjugate Gradients, J. Comput. Phys., Volume 229 (2010) no. 21, pp. 8065-8071 | DOI | Zbl

Cité par Sources :

Commentaires - Politique