Sab et al. (2024) have recently proposed an FFT-based iterative algorithm, termed Adaptive Eyre–Milton (AEM), for solving the Lippmann–Schwinger equation in the context of periodic homogenization of infinitely double contrasted linear elastic composites (heterogeneous materials with linear constitutive laws that contain both pores and rigid inclusions). They have demonstrated the unconditional linear convergence of this scheme, regardless of initialization and the chosen reference material. However, numerical simulations have shown that the rate of convergence of AEM strongly depends on the chosen reference material. In this paper, we introduce a new version of the AEM scheme where the reference material is updated iteratively, resulting in a fast and versatile scheme, termed Accelerated Adaptive Eyre–Milton (A2EM). Numerical simulations with A2EM on linear elastic composites with both pores and infinitely rigid inclusions show that, regardless of the initial chosen reference material, this algorithm has the same rate of convergence as AEM with the best choice of reference material.
Sab et al. (2024) ont récemment proposé un algorithme itératif basé sur la FFT, appelé Adaptive Eyre–Milton (AEM), pour résoudre l’équation de Lippmann–Schwinger dans le contexte de l’homogénéisation périodique de composites élastiques linéaires à double contraste infini (matériaux hétérogènes avec des lois constitutives linéaires contenant à la fois des pores et des inclusions rigides). Ils ont démontré la convergence linéaire inconditionnelle de ce schéma, quel que soit l’initialisation et le matériau de référence choisis. Cependant, les simulations numériques ont montré que la vitesse de convergence du schéma AEM dépend fortement du choix du matériau de référence. Dans cet article, nous introduisons une nouvelle version du schéma AEM, où le matériau de référence est mis à jour de manière itérative, aboutissant à un schéma rapide et polyvalent, appelé Accelerated Adaptive Eyre–Milton (A2EM). Des simulations numériques avec le schéma A2EM sur des composites élastiques linéaires avec des pores et des inclusions infiniment rigides montrent que, quel que soit le matériau de référence initial choisi, cet algorithme a la même vitesse de convergence que le schéma AEM avec le meilleur choix du matériau de référence.
Accepted:
Published online:
Mots-clés : homogénéisation computationnelle, méthode basée sur la FFT, schéma itératif, élasticité linéaire, matériaux composites
Martin Dolbeau 1; Jérémy Bleyer 2; Karam Sab 2
@article{CRMECA_2024__352_G1_251_0, author = {Martin Dolbeau and J\'er\'emy Bleyer and Karam Sab}, title = {Accelerating the {Adaptive} {Eyre{\textendash}Milton} {FFT-based} method for infinitely double contrasted media}, journal = {Comptes Rendus. M\'ecanique}, pages = {251--267}, publisher = {Acad\'emie des sciences, Paris}, volume = {352}, year = {2024}, doi = {10.5802/crmeca.269}, language = {en}, }
TY - JOUR AU - Martin Dolbeau AU - Jérémy Bleyer AU - Karam Sab TI - Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely double contrasted media JO - Comptes Rendus. Mécanique PY - 2024 SP - 251 EP - 267 VL - 352 PB - Académie des sciences, Paris DO - 10.5802/crmeca.269 LA - en ID - CRMECA_2024__352_G1_251_0 ER -
%0 Journal Article %A Martin Dolbeau %A Jérémy Bleyer %A Karam Sab %T Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely double contrasted media %J Comptes Rendus. Mécanique %D 2024 %P 251-267 %V 352 %I Académie des sciences, Paris %R 10.5802/crmeca.269 %G en %F CRMECA_2024__352_G1_251_0
Martin Dolbeau; Jérémy Bleyer; Karam Sab. Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely double contrasted media. Comptes Rendus. Mécanique, Volume 352 (2024), pp. 251-267. doi : 10.5802/crmeca.269. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.269/
[1] FFT-based Methods for the Mechanics of Composites: A General Variational Framework, Comput. Mater. Sci., Volume 49 (2010) no. 3, pp. 663-671 | DOI
[2] Geometric variational principles for computational homogenization, J. Elasticity, Volume 137 (2019), pp. 119-149 | DOI | Zbl
[3] Supplementary material to ‘Accelerating the Adaptive Eyre–Milton FFT-based method for infinitely contrasted media’, Zenodo, 2024 | DOI
[4] A Fast Numerical Scheme for Computing the Response of Composites Using Grid Refinement, Eur. Phys. J. AP, Volume 6 (1999) no. 01, pp. 41-47 | DOI
[5] Non-Linear Extension of FFT-based Methods Accelerated by Conjugate Gradients to Evaluate the Mechanical Behavior of Composite Materials, Comput. Mater. Sci., Volume 77 (2013), pp. 430-439 | DOI
[6] Efficient Fixed Point and Newton–Krylov Solvers for FFT-based Homogenization of Elasticity at Large Deformations, Comput. Mech., Volume 54 (2014) no. 6, pp. 1497-1514 | DOI | Zbl
[7] Theory of Elastic Constants of Heterogeneous Media, J. Math. Phys., Volume 14 (1973) no. 4, pp. 509-513 | DOI | Zbl
[8] On the Physics and Mathematics of Self-Stresses, Topics in Applied Continuum Mechanics (J. L. Zeman; F. Ziegler, eds.), Springer: Vienna (1974), pp. 22-38 | DOI | Zbl
[9] Non-stationary Douglas–Rachford and alternating direction method of multipliers: adaptive step-sizes and convergence, Comput. Optim. Appl., Volume 74 (2019) no. 1, pp. 67-92 | DOI | Zbl
[10] A Polarization-Based FFT Iterative Scheme for Computing the Effective Properties of Elastic Composites with Arbitrary Contrast, Int. J. Numer. Methods Eng., Volume 89 (2012) no. 11, pp. 1419-1436 | DOI | Zbl
[11] The Theory of Composites, Cambridge Monographs on Applied and Computational Mathematics, 6, Cambridge University Press, 2002 | DOI | Zbl
[12] A Computational Scheme for Linear and Non-Linear Composites with Arbitrary Phase Contrast, Int. J. Numer. Methods Eng., Volume 52 (2001) no. 1-2, pp. 139-160 | DOI
[13] Comparison of Three Accelerated FFT-based Schemes for Computing the Mechanical Response of Composite Materials, Int. J. Numer. Methods Eng., Volume 97 (2014) no. 13, pp. 960-985 | DOI | Zbl
[14] A Fast Numerical Method for Computing the Linear and Nonlinear Mechanical Properties of Composites, C. R. Acad. Sci., Sér. IIA Earth Planet. Sci., Volume 318 (1994) no. 11, pp. 1417-1423 | Zbl
[15] A Numerical Method for Computing the Overall Response of Nonlinear Composites with Complex Microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998) no. 1-2, pp. 69-94 | DOI | Zbl
[16] An FFT-based adaptive polarization method for infinitely contrasted media with guaranteed convergence, Comput. Methods Appl. Mech. Eng., Volume 427 (2024), 117012 | DOI | Zbl
[17] An FFT-based Fast Gradient Method for Elastic and Inelastic Unit Cell Homogenization Problems, Comput. Methods Appl. Mech. Eng., Volume 315 (2017), pp. 846-866 | DOI | Zbl
[18] On the Barzilai–Borwein Basic Scheme in FFT-based Computational Homogenization, Int. J. Numer. Methods Eng., Volume 118 (2019) no. 8, pp. 482-494 | DOI | Zbl
[19] A Review of Nonlinear FFT-based Computational Homogenization Methods, Acta Mech., Volume 232 (2021) no. 6, pp. 2051-2100 | DOI | Zbl
[20] On non-stationary polarization methods in FFT-based computational micromechanics, Int. J. Numer. Methods Eng., Volume 122 (2021) no. 22, pp. 6800-6821 | DOI | Zbl
[21] On Polarization-Based Schemes for the FFT-based Computational Homogenization of Inelastic Materials, Comput. Mech., Volume 64 (2019) no. 4, pp. 1073-1095 | DOI | Zbl
[22] Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. Méc. Acad. Sci. Paris, Volume 343 (2015) no. 3, pp. 232-245 | DOI
[23] Elastic Constants of Polycrystals, Phys. Status Solidi B Basic Res., Volume 55 (1973) no. 2, pp. 831-842 | DOI
[24] Accelerating a FFT-based Solver for Numerical Homogenization of Periodic Media by Conjugate Gradients, J. Comput. Phys., Volume 229 (2010) no. 21, pp. 8065-8071 | DOI | Zbl
Cited by Sources:
Comments - Policy