[Un solveur FFT précis et robuste pour la diffusion transitoire dans les matériaux hétérogènes]
Cette note propose un solveur FFT efficace, précis et robuste pour la diffusion transitoire dans des matériaux hétérogènes avec des conditions aux limites (CL) dites « réalistes » . Cette approche exploite deux avancées récentes : le traitement des conditions aux limites non périodiques et l’utilisation d’un nouveau schéma de différences finies limitant les oscillations parasites. Il s’agit d’une étape essentielle vers le couplage entre la mécanique et d’autres phénomènes physiques (comme la diffusion d’espèces) à l’aide de solveurs FFT. Les Transformées Trigonométriques Discrètes sont utilisées pour implémenter des conditions aux limites non périodiques, tandis qu’un schéma de différences finies (DF) récemment proposé par Finel est comparé avantageusement au schéma DF classique hexaédrique.
Le terme « précis » se réfère à deux aspects : (1) la précision locale, grâce à un schéma de DF de petite taille permettant de capturer les fluctuations autour des hétérogénéités du matériau, et (2) la précision en termes de fidélité, avec l’absence d’oscillations spatiales parasites (au moins dans les cas étudiés avec des inclusions bien séparées). La « robustesse » fait référence à la stabilité du solveur, notamment grâce une méthode d’intégration temporelle implicite. Bien que la description se concentre sur la diffusion thermique, la méthode s’applique à tout processus de diffusion similaire (régie par une équation parabolique du même type).
En complément, le schéma DF proposé par Finel est présenté de manière plus générale (pour mélanger différents schémas de différences finies) et simplifiée (sans introduction de sous-grilles FCC), élargissant également son usage à tout type de parité de grille (et pas seulement aux grilles paires).
The purpose of the present letter is to propose an efficient, accurate and robust FFT-based solver for transient diffusion in heterogeneous materials with “realistic” BC, taking advantage of two recent advances in terms of boundary conditions and finite difference schemes to overcome their actual limitations (periodic BC and spurious oscillations). It is an essential step towards couplings between mechanics and other physics (such as the diffusion of species) through FFT-based solvers. Discrete Trigonometric Transform are used to implement non-periodic boundary conditions, and a finite difference (FD) scheme recently proposed by Finel is advantageously compared to the common hexahedral FD scheme. “Accurate” refers to two properties: accurate in term of locality with a small size of Finite Difference pencil to capture fluctuations around material heterogeneities, and accurate in term of precision with the absence of spurious spatial oscillations (at least in the reported cases with well-separated inclusions). The “robustness” is here associated to the stability of the solver, especially associated to the implicit time integration method. The description of the method focuses on thermal diffusion but applies to any other similar diffusion process (with the same type of parabolic equation). As a by-product, the FD scheme proposed by Finel is introduced in a more general (for mixing finite different schemes) and simple way (no introduction of FCC subgrids), extending its usage to any type of grid parity (not only even grids).
Révisé le :
Accepté le :
Publié le :
Mots-clés : FFT, Matériaux hétérogènes, Diffusion transitoire, Différences finies, Tétraèdres
Lionel Gélébart 1
@article{CRMECA_2025__353_G1_113_0, author = {Lionel G\'el\'ebart}, title = {An accurate and robust {FFT-based} solver for transient diffusion in heterogeneous materials}, journal = {Comptes Rendus. M\'ecanique}, pages = {113--125}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.281}, language = {en}, }
Lionel Gélébart. An accurate and robust FFT-based solver for transient diffusion in heterogeneous materials. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 113-125. doi : 10.5802/crmeca.281. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.281/
[1] A linear theory of thermochemical equilibrium of solids under stress, Acta Metall., Volume 21 (1973) no. 8, pp. 1051-1063 | DOI
[2] Overview no. 41 the interactions of composition and stress in crystalline solids, Acta Metall., Volume 33 (1985) no. 3, pp. 331-357 | DOI
[3] A fully coupled diffusional-mechanical formulation: numerical implementation, analytical validation, and effects of plasticity on equilibrium, Arch. Appl. Mech., Volume 84 (2014) no. 9, pp. 1647-1664 | DOI
[4] A phase field formulation for hydrogen assisted cracking, Comput. Methods Appl. Mech. Eng., Volume 342 (2018), pp. 742-761 | DOI
[5] Effect of free surface, oxide, and coating layers on rafting in superalloys, Superalloys 2024 (J. Cormier; I. Edmonds; S. Forsik; P. Kontis; C. O’Connell; T. Smith; A. Suzuki; S. Tin; J. Zhang, eds.), Springer Nature Switzerland, Cham, 2024, pp. 694-704 | DOI
[6] A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998) no. 1-2, pp. 69-94 | DOI
[7] FFT-based simulations of heterogeneous conducting materials with combined non-uniform neumann, periodic and dirichlet boundary conditions, Eur. J. Mech. - A/Solids, Volume 105 (2024), 105248 | DOI
[8] A discrete sine-cosine transforms Galerkin method for the conductivity of heterogeneous materials with mixed Dirichlet/Neumann boundary conditions, Int. J. Numer. Methods Eng., Volume 126 (2025), e7615 | DOI
[9] Imposing different boundary conditions for thermal computational homogenization problems with FFT- and tensor-train-based Green’s operator methods, Int. J. Numer. Methods Eng., Volume 125 (2024) no. 7, e7423 | DOI
[10] FFT-based mechanical simulations of heterogeneous materials with combined non-uniform neumann, periodic and dirichlet boundary conditions, Comput. Mech. (2024) (revision in progress)
[11] Imposing Dirichlet boundary conditions directly for FFT-based computational micromechanics, Comput. Mech., Volume 74 (2024), pp. 1089-1113 | DOI
[12] A discrete sine-cosine based method for the elasticity of heterogeneous materials with arbitrary boundary conditions, Comput. Methods Appl. Mech. Eng., Volume 433 (2025), 117488 | DOI
[13] Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. Méc., Volume 343 (2015) no. 3, pp. 232-245 | DOI
[14] FFT-based homogenization for microstructures discretized by linear hexahedral elements, Int. J. Numer. Meth. Eng., Volume 109 (2017) no. 10, pp. 1461-1489 | DOI
[15] Hourglass control in linear and nonlinear problems, Comput. Methods Appl. Mech. Eng., Volume 43 (1984) no. 3, pp. 251-276 | DOI
[16] Voxel-based finite elements with hourglass control in fast fourier transform-based computational homogenization, Int. J. Numer. Methods Eng., Volume 123 (2022) no. 24, pp. 6286-6313 | DOI
[17] A fast and robust discrete FFT-based solver for computational homogenization, 2024 (submitted, https://arxiv.org/pdf/2405.11168v1)
[18] A review of nonlinear FFT-based computational homogenization methods, Acta Mech., Volume 232 (2021) no. 6, pp. 2051-2100 | DOI
[19] Iterative procedures for nonlinear integral equations, J. ACM (JACM), Volume 12 (1965) no. 4, pp. 547-560 | DOI
[20] Analysis of the damage initiation in a sic/sic composite tube from a direct comparison between large-scale numerical simulation and synchrotron x-ray micro-computed tomography, Int. J. Solids Struct., Volume 161 (2019), pp. 111-126 | DOI
[21] Use of composite voxels in FFT based elastic simulations of hollow glass microspheres/polypropylene composites, Int. J. Solids Struct., Volume 182-183 (2020), pp. 1-14 | DOI
[22] https://amitexfftp.github.io/amitex/index.html
, 2022[23] The design and implementation of FFTW3, Proc. IEEE, Volume 93 (2005) no. 2, pp. 216-231 | DOI
Cité par Sources :
Commentaires - Politique