Comptes Rendus
Histoire des sciences et des idées
The factor two
[Le facteur deux]
Comptes Rendus. Physique, Volume 26 (2025), pp. 349-368.

Cet article fait partie du numéro thématique Gérard Toulouse, une vie de découvertes et d'engagement coordonné par Bernard Derrida et al..

Examples are given of physical problems where factor two played an important role. First, we consider the irregularities of the Moon trajectory that Newton correctly, attributed to the differences in the attraction by the Sun of Earth and Moon because of the small differences in their location. Newton’s estimate of those (small) irregularities was off the measures by a factor close to two, which was restored mater by Clairaut and seen as a major success for Newton’s dynamical theory. Another factor two appears in the Sun’s estimate of the deviation of light. The deviation computed by using special relativity is half the one measured. As Einstein showed, the factor is restored by considering general relativity which considers the changes in the metric due to gravity. Lastly, we consider a more recent problem, the one of the apparent doubling of electric charges in a superconductor as measured by the quantum of flux, which is half the one predicted by London, namely ℏc/2e instead of ℏc/e. This doubling is classically explained by assuming that, in superconductors current carrying fermions are in pairs so that the unit charge becomes 2e instead of e. We argue instead that if one takes into account that the fermions carry a spin 1/2 the quantization element of magnetic flux is divided by two as implied by looking at the second class of homotopy of the group of transformation SU(2) × U(1) of the ground state, as it follows from Toulouse theory of defects in ordered media.

Nous donnons plusieurs exemples de problèmes physiques où un facteur 2 joue un rôle important. Nous examinons d’abord la question des irrégularités du mouvement de la lune attribuées correctement par Newton à la différence de l’attraction du soleil sur la terre et sur la lune légèrement décalées l’une par rapport à l’autre vues du soleil. L’estimation par Newton de ces irrégularités différait d’un facteur 2 environ des observations. Ce facteur 2 a été trouvé par Clairaut en utilisant la théorie dynamique de Newton qui fut ainsi été pleinement confirmée. Un autre facteur 2 apparaît dans le calcul de la déviation d’un rayon lumineux par la masse du soleil. La relativité restreinte donne un résultat différent de l’observation aussi par un facteur 2. Ce facteur 2 a été rétabli par Einstein en utilisant la relativité générale qui tient compte de la déformation de la métrique de l’espace-temps près des masses, ce que ne fait pas la relativité restreinte. Finalement nous considérons une question de physique plus récente, celle du quantum de flux magnétique dans un supraconducteur. Les mesures donnent un quantum moitié de celui prédit par London, soit ℏc/2e au lieu de ℏc/e. L’explication habituelle de ce facteur 2 est que dans les supraconducteurs les électrons porteurs de charge sont appariés, ce qui doublerait la charge du quantum de London. Nous montrons qu’il existe une autre possibilité d’explication de cette division par 2 du quantum de London, basée sur la théorie de Toulouse des défauts dans les milieux continus. Dans le cas présent, le quantum de flux magnétique est lié au premier groupe d’homotopie du paramètre d’ordre qui, si l’on inclut la phase de la fonction d’onde globale et le spin 1/2 a le groupe de symétrie SU(2) × U(1) qui génère des défauts pour lesquels la circulation vaut la moitié de celle du groupe U(1), qui serait donc limité à la seule phase (le groupe U(1) sans les rotations de spin le groupe SU(2)). Cette division par 2 de la circulation de la phase remonte à une remarque de Cauchy sur l’échange des deux valeurs propres d’une matrice 2 × 2 le long d’un cercle entourant (dans le plan complexe) un zéro du déterminant.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crphys.248
Keywords: SU(2) × U(1) Topological defects, Quantum of London, Superconductivity, Superfluidity
Mots-clés : Défauts topologiques SU(2) × U(1), Quantum de London, Supraconductivité, Superfluidité

Yves Pomeau 1 ; Sergio Rica 2

1 LadHyX, CNRS & Ecole Polytechnique, UMR 7646, IP Paris, 91128, Palaiseau, France
2 Instituto de Física, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRPHYS_2025__26_G1_349_0,
     author = {Yves Pomeau and Sergio Rica},
     title = {The factor two},
     journal = {Comptes Rendus. Physique},
     pages = {349--368},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {26},
     year = {2025},
     doi = {10.5802/crphys.248},
     language = {en},
}
TY  - JOUR
AU  - Yves Pomeau
AU  - Sergio Rica
TI  - The factor two
JO  - Comptes Rendus. Physique
PY  - 2025
SP  - 349
EP  - 368
VL  - 26
PB  - Académie des sciences, Paris
DO  - 10.5802/crphys.248
LA  - en
ID  - CRPHYS_2025__26_G1_349_0
ER  - 
%0 Journal Article
%A Yves Pomeau
%A Sergio Rica
%T The factor two
%J Comptes Rendus. Physique
%D 2025
%P 349-368
%V 26
%I Académie des sciences, Paris
%R 10.5802/crphys.248
%G en
%F CRPHYS_2025__26_G1_349_0
Yves Pomeau; Sergio Rica. The factor two. Comptes Rendus. Physique, Volume 26 (2025), pp. 349-368. doi : 10.5802/crphys.248. https://comptes-rendus.academie-sciences.fr/physique/articles/10.5802/crphys.248/

[1] I. Newton The Principia: Mathematical Principles of Natural Philosophy, A New Translation by I. Bernard Cohen and Anne Whitman, University of California Press, Berkeley, Los Angeles, London, 1999

[2] M. Nauenberg Newton’s unpublished perturbation method for the lunar motion, Int. J. Eng. Sci., Volume 36 (1998) no. 12, pp. 1391-1405 | DOI

[3] M. Nauenberg Newton’s perturbation methods for the three-body problem and their application to lunar motion, Isaac Newton’s Natural Philosophy, Volume 10, The MIT Press, Cambridge, MA, 2000 | DOI

[4] A.-C. Clairaut Théorie de la Lune, deduite du seul Principe de l’Attraction réciproquement proportionelle aux quarrés des distances, Piece qui a remportée le Prix de l’Academie Imperialedes Sciences de St. Petersbourg proposé en M.DCCL, Imprimerie de l’Acad. Imperiale des Sciences, St. Petersbourg, 1752

[5] A.-C. Clairaut Tables de la Lune, calculées suivant la théorie de la gravitation universelle, Durant Pissot MDCCLIV, Paris, 1754

[6] G. Bigourdan Lettres inédites d’Euler à Clairaut, Comptes rendus Congrès des sociétés savantes de Paris et des départments, tenu à Lille en 1928, Imprimerie Nationale, Paris, 1930 | Zbl

[7] L. Euler Theoria motus lunae exhibens omnes eius inaequalitates, Petropolitanae: Impensis Academiae Imperialis Scientiarum, St. Petersburg, 1753

[8] A. Einstein Zur Theorie des statischen Gravitationsfeldes, Ann. Phys., Volume 343 (1912) no. 7, pp. 443-458 | DOI | Zbl

[9] A. Einstein Die Grundlage der allgemeinen Relativitätstheorie (The basis of the general theory of relativity), Ann. Phys., Volume 354 (1916) no. 7, pp. 769-822 | DOI | Zbl

[10] L. Landau Theory of the superfluidity of helium II, J. Phys. (USSR), Volume 5 (1941), pp. 71-100 | DOI

[11] L. Onsager Statistical hydrodynamics, Il Nuovo Cimento, Volume 6 (1949) no. Suppl. 2, pp. 279-287 | DOI

[12] L. Onsager General Discussion to the seminar of C. J. Gorter, Il Nuovo Cimento, Volume 6 (1949) no. Suppl. 2, pp. 249-250

[13] F. London Superfluids Volume 1: Macroscopic Theory of Superconductivity, Dover Publications, New York, 1961 (see Section 26)

[14] H. E. Hall; W. F. Vinen The Rotation of liquid helium II. II. The theory of mutual friction in uniformly rotating helium II, Proc. R. Soc. Lond. A, Math. Phys. Sci., Volume 238 (1956) no. 1213, pp. 215-234 | Zbl

[15] W. F. Vinen The detection of single quanta of circulation in liquid helium II, Proc. R. Soc. Lond. A Math. Phys. Sci., Volume 260 (1961) no. 1301, pp. 218-236

[16] R. J. Donnelly Quantized Vortices in Helium II, Cambridge University Press, Cambridge, 1991

[17] L. Onsager General discussion on superconductivity, General Discussion on Superconductivity, Proceeding of the International Conference on Theoretical Physics, Science Council of Japan, Kyoto-Tokyo, 1953, Science Council of Japan, Tokyo (1954), pp. 935-936

[18] B. S. Deaver; W. M. Fairbank Experimental evidence for quantized flux in superconducting cylinders, Phys. Rev. Lett., Volume 7 (1961), pp. 43-46 | DOI

[19] R. Doll; M. Näbauer Experimental proof of magnetic flux quantization in a superconducting ring, Phys. Rev. Lett., Volume 7 (1961), pp. 51-52 | DOI

[20] C. E. Gough; M. S. Colclough; E. M. Forgan et al. Flux quantization in a high-Tc superconductor, Nature, Volume 326 (1987), p. 855 | DOI

[21] N. Byers; C. N. Yang Theoretical considerations concerning quantized magnetic flux in superconducting cylinders, Phys. Rev. Lett., Volume 7 (1961), pp. 46-49 | DOI

[22] L. Onsager Magnetic flux through a superconducting ring, Phys. Rev. Lett., Volume 7 (1961), p. 50 | DOI

[23] J. M. Blatt Persistent ring currents in an ideal bose gas, Phys. Rev. Lett., Volume 7 (1961), pp. 82-83 | DOI

[24] J. Bardeen Quantization of flux in a superconducting cylinder, Phys. Rev. Lett., Volume 7 (1961), pp. 162-163 | DOI

[25] J. B. Keller; B. Zumino Quantization of the fluxoid in superconductivity, Phys. Rev. Lett., Volume 7 (1961), pp. 164-165 | DOI

[26] W. Brenig Remark concerning quantized magnetic flux in superconductors, Phys. Rev. Lett., Volume 7 (1961), pp. 337-339 | DOI

[27] V. Ginzburg Magnetic flux quantization in a superconducting cylinder, Sov. Phys. JETP, Volume 15 (1962), pp. 207-209 | Zbl

[28] J. Bardeen; L. N. Cooper; J. R. Schrieffer Theory of superconductivity, Phys. Rev., Volume 108 (1957), pp. 1175-1204 | DOI | Zbl

[29] M. R. Schafroth Superconductivity of a charged ideal bose gas, Phys. Rev., Volume 100 (1955), pp. 463-475 | DOI

[30] M. R. Schafroth Superconductivity of a charged boson gas, Phys. Rev., Volume 96 (1954), p. 1149 | DOI

[31] M. R. Schafroth Theory of superconductivity, Phys. Rev., Volume 96 (1954), p. 1442 | DOI

[32] W. A. Little; R. D. Parks Observation of quantum periodicity in the transition temperature of a superconducting cylinder, Phys. Rev. Lett., Volume 9 (1962), pp. 9-12 | DOI

[33] L. N. Cooper Bound electron pairs in a degenerate Fermi gas, Phys. Rev., Volume 104 (1956), pp. 1189-1190 | DOI | Zbl

[34] R. D. Parks Quantized magnetic flux in superconductors, Science, Volume 146 (1964) no. 3650, pp. 1429-1435 | DOI

[35] W. Fairbank; A. Fetter Handbook of Physics (E. U. Condon; H. Odishaw, eds.), McGraw-Hill, New York, 1967

[36] D. Tilley; J. Tilley Superfluidity and Superconductivity, IOP Publ. Ltd, Bristol, 1990

[37] A. J. Leggett Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed-matter Systems, Oxford University Press, New York, 2006 | DOI

[38] A. Abrikosov Fundamentals of the Theory of Metals, Dover Publications, New York, 2017

[39] Y. Pomeau; S. Rica Quantum of London and spin-1/2, Il Nuovo Cimento B, Volume 111 (1996), pp. 911-915 | DOI

[40] L. Pismen; Y. Pomeau; S. Rica Core structure and oscillations of spinor vortices, Phys. D: Nonlinear Phenom., Volume 117 (1998) no. 1, pp. 167-180 | DOI | Zbl

[41] V. Ginzburg; L. Pitaevskii On the theory of superfluidity, Sov. Phys. JETP, Volume 7 (1958), pp. 858-861

[42] L. Pitaevskii Vortex lines in an imperfect bose gas, Sov. Phys. JETP, Volume 13 (1961), pp. 451-454

[43] E. P. Gross Unified theory of interacting bosons, Phys. Rev., Volume 106 (1957), pp. 161-162 | DOI | Zbl

[44] E. Gross Classical theory of boson wave fields, Ann. Phys., Volume 4 (1958) no. 1, pp. 57-74 | DOI | Zbl

[45] E. P. Gross Structure of a quantized vortex in boson systems, Il Nuovo Cimento, Volume 20 (1961), pp. 454-477 | DOI | Zbl

[46] E. P. Gross Hydrodynamics of a superfluid condensate, J. Math. Phys., Volume 4 (2004) no. 2, pp. 195-207 | DOI

[47] L. Pismen Vortices in Nonlinear Fields: From Liquid Crystals to Superfluids, From Non-equilibrium Patterns to Cosmic Strings, Oxford University Press, New York, 1999 | DOI

[48] G. Toulouse; M. Kléman Principles of a classification of defects in ordered media, J. Phys. Lett., Volume 37 (1976) no. 6, pp. 149-151 | DOI

[49] P. Dirac The Principles of Quantum Mechanics, Comparative Pathobiology—Studies in the Postmodern Theory of Education, Clarendon Press, London, 1981

[50] J. C. Davis; J. D. Close; R. Zieve; R. E. Packard Observation of quantized circulation in superfluid He3 B, Phys. Rev. Lett., Volume 66 (1991), pp. 329-332 | DOI | Zbl

[51] F. London The λ-phenomenon of liquid helium and the bose-einstein degeneracy, Nature, Volume 141 (1938) no. 3571, pp. 643-644 | DOI

[52] L. Tisza Transport phenomena in helium II, Nature, Volume 141 (1938) no. 3577, p. 913 | DOI

[53] L. Landau Theory of the superfluidity of helium II, Phys. Rev., Volume 60 (1941), pp. 356-358 | DOI | Zbl

[54] L. Landau On the theory of superfluidity of helium II, J. Phys. (USSR), Volume 11 (1947), pp. 91-92 | DOI

[55] N. N. Bogolyubov On the theory of superfluidity, J. Phys. (USSR), Volume 11 (1947), pp. 23-32

[56] C. Raman; M. Köhl; R. Onofrio; D. S. Durfee; C. E. Kuklewicz; Z. Hadzibabic; W. Ketterle Evidence for a critical velocity in a Bose-Einstein condensed gas, Phys. Rev. Lett., Volume 83 (1999), pp. 2502-2505 | DOI

[57] A. J. Leggett Can a solid be “superfluid”?, Phys. Rev. Lett., Volume 25 (1970), pp. 1543-1546 | DOI

[58] A. J. Leggett On the superfluid fraction of an arbitrary many-body system at T = 0, J. Stat. Phys., Volume 93 (1998), pp. 927-941 | DOI | Zbl

[59] M. M. Parish The BCS-BEC crossover, Imperial College Press, London (2014), pp. 179-197 (Chapter 9) | DOI

[60] G. C. Strinati; P. Pieri; G. Röpke; P. Schuck; M. Urban The BCS-BEC crossover: from ultra-cold Fermi gases to nuclear systems, Phys. Rep., Volume 738 (2018), pp. 1-76 | DOI

[61] L. Keldysh; Y. Kopaev Possible instability of the semimetallic state toward coulomb interaction, Sov. Phys. Solid State, Volume 6 (1965), pp. 2219-2224

[62] L. Keldysh; A. Kozlov Collective properties of excitons in semiconductors, J. Exp. Theor. Phys., Volume 27 (1968), pp. 521-528

[63] A. J. Leggett Diatomic molecules and cooper pairs, Modern Trends in the Theory of Condensed Matter (A. Pękalski; J. A. Przystawa, eds.), Springer Berlin Heidelberg, Berlin, Heidelberg, 1980, pp. 13-27 | DOI

[64] M. W. Zwierlein; J. R. Abo-Shaeer; A. Schirotzek; C. H. Schunck; W. Ketterle Vortices and superfluidity in a strongly interacting Fermi gas, Nature, Volume 435 (2005) no. 7045, pp. 1047-1051 | DOI

[65] P. Nozières; S. Schmitt-Rink Bose condensation in an attractive fermion gas: from weak to strong coupling superconductivity, J. Low Temp. Phys., Volume 59 (1985), pp. 195-211 | DOI

[66] Microsoft Azure Quantum; M. Aghaee; A. Alcaraz Ramirez et al. Interferometric single-shot parity measurement in InAs–Al hybrid device, Nature, Volume 638 (2025), pp. 651-655 | DOI

Cité par Sources :

Commentaires - Politique