Comptes Rendus
Article de recherche
Computational identification of double-bending stiffness: from Zigzagged Articulated Parallelograms with Articulated Braces (ZAPAB) structures to pure-curvature gradient planar inextensible 1D continua
[Identification computationnelle de la rigidité de la double flexion : des parallélogrammes articulés en zigzag aux structures de bras articulés aux continuums 1D inextensibles planaires à gradient de courbure pur]
Comptes Rendus. Mécanique, Volume 353 (2025), pp. 647-672.

An inextensible 1D continuum whose deformation energy purely depends on the gradient of the associated curvature is introduced to describe the behavior of Zigzagged Articulated Parallelograms with Articulated Braces truss structures (ZAPAB structures) after homogenization. We choose a particular ZAPAB structure in which all but one of the constituting bars of the basic module do not change their length under applied loads. This judicious choice allows us to verify, through numerical simulations, that the corresponding 1D continuum indeed has a deformation energy that depends solely on the derivative of curvature. Thus, by employing a best-fitting approach based on the least squares method, we numerically identify the best stiffness coefficient (in the least squared sense) associated with the energy contribution due to the gradient of curvature, termed as double-bending stiffness. The presented simulations consider the case of uniformly distributed applied dead loads, and reveal a strong match between the current configurations of the proposed 1D continuum model, obtained numerically through the Finite Element Method, and the current configurations of the ZAPAB structure (for a selected number of basic modules), obtained through a discrete numerical approach, with the curves coinciding up to certain intrinsic error. These results require the development of an analytical micro–macro identification procedure. ZAPAB structures facilitate advances in the synthesis of tailored materials and the n-th gradient theory. We adopt a theory-driven approach with the expectation of devising materials with exotic behaviors. Specifically, we anticipate that material lines capable of not storing deformation energy under uniform bending (constant curvature) will be obtained after homogenization, thereby paving the way for future work that introduces complex materials built upon them. Our discussion is inspired by well-known pantographic structures, which serve as archetypes of second gradient materials designed in such a way that no deformation energy is stored under uniform extension.

Un continuum 1D inextensible dont l’énergie de déformation dépend purement du gradient de la courbure associée est introduit pour décrire le comportement des structures en treillis Zigzagged Articulated Parallelograms with Articulated Braces (structures ZAPAB) après homogénéisation. Nous choisissons une structure ZAPAB particulière dans laquelle toutes les barres constitutives du module de base, sauf une, ne changent pas de longueur sous l’effet des charges appliquées. Ce choix judicieux nous permet de vérifier, par des simulations numériques, que le continuum 1D correspondant a effectivement une énergie de déformation qui dépend uniquement de la dérivée de la courbure. Ainsi, en employant une approche de meilleur ajustement basée sur la méthode des moindres carrés, nous identifions numériquement le meilleur coefficient de rigidité (au sens des moindres carrés) associé à la contribution énergétique due au gradient de courbure, appelé rigidité de double courbure. Les simulations présentées considèrent le cas de charges permanentes uniformément réparties et révèlent une forte correspondance entre les configurations actuelles du modèle continu 1D proposé, obtenues numériquement par la méthode des éléments finis, et les configurations actuelles de la structure ZAPAB (pour un nombre sélectionné de modules de base), obtenues par une approche numérique discrète, les courbes coïncidant jusqu’à une certaine marge d’erreur intrinsèque. Ces résultats nécessitent le développement d’une procédure analytique d’identification micro–macro.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.300
Keywords: Metamaterials, 1D continuum model, Third gradient continua, Gradient of curvature, Computational identification, ZAPAB structure
Mots-clés : Métamatériaux, Modèle de continuum 1D, Continuum de troisième gradient, Gradient de courbure, Identification computationnelle, Structure ZAPAB

Larry Murcia Terranova 1 ; Emilio Turco 2 ; Anil Misra 3 ; Francesco dell’Isola 4, 5, 6

1 Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, L’Aquila, Italy
2 Department of Architecture, Design and Urban Planning, University of Sassari, Alghero, Sassari, Italy
3 Department of Civil and Environmental Engineering, Florida International University, Miami, Florida, USA
4 Department of Civil, Construction-Architecture and Environmental Engineering, University of L’Aquila, L’Aquila, Italy
5 Warsaw University of Technology, Poland
6 ENS Paris Saclay, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2025__353_G1_647_0,
     author = {Larry Murcia Terranova and Emilio Turco and Anil Misra and Francesco dell{\textquoteright}Isola},
     title = {Computational identification of double-bending stiffness: from {Zigzagged} {Articulated} {Parallelograms} with {Articulated} {Braces} {(ZAPAB)} structures to pure-curvature gradient planar inextensible {1D} continua},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {647--672},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {353},
     year = {2025},
     doi = {10.5802/crmeca.300},
     language = {en},
}
TY  - JOUR
AU  - Larry Murcia Terranova
AU  - Emilio Turco
AU  - Anil Misra
AU  - Francesco dell’Isola
TI  - Computational identification of double-bending stiffness: from Zigzagged Articulated Parallelograms with Articulated Braces (ZAPAB) structures to pure-curvature gradient planar inextensible 1D continua
JO  - Comptes Rendus. Mécanique
PY  - 2025
SP  - 647
EP  - 672
VL  - 353
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.300
LA  - en
ID  - CRMECA_2025__353_G1_647_0
ER  - 
%0 Journal Article
%A Larry Murcia Terranova
%A Emilio Turco
%A Anil Misra
%A Francesco dell’Isola
%T Computational identification of double-bending stiffness: from Zigzagged Articulated Parallelograms with Articulated Braces (ZAPAB) structures to pure-curvature gradient planar inextensible 1D continua
%J Comptes Rendus. Mécanique
%D 2025
%P 647-672
%V 353
%I Académie des sciences, Paris
%R 10.5802/crmeca.300
%G en
%F CRMECA_2025__353_G1_647_0
Larry Murcia Terranova; Emilio Turco; Anil Misra; Francesco dell’Isola. Computational identification of double-bending stiffness: from Zigzagged Articulated Parallelograms with Articulated Braces (ZAPAB) structures to pure-curvature gradient planar inextensible 1D continua. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 647-672. doi : 10.5802/crmeca.300. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.300/

[1] R. Afshar; S. Jeanne; B. E. Abali Nonlinear material modeling for mechanical characterization of 3-D printed PLA polymer with different infill densities, Appl. Compos. Mater., Volume 30 (2023) no. 3, pp. 987-1001 | DOI

[2] R. Afshar; S. Jeanne; B. E. Abali Effects of 3-D printing infill density parameter on the mechanical properties of PLA polymer, Sixty Shades of Generalized Continua, Volume 170, Springer International Publishing, Cham, 2023, pp. 1-12 | DOI

[3] H. Yang; G. Ganzosch; I. Giorgio; B. E. Abali Material characterization and computations of a polymeric metamaterial with a pantographic substructure, Z. für Angew. Math. Phys., Volume 69 (2018) no. 4, 105 | DOI | MR | Zbl

[4] H. Lipson; M. Kurman Fabricated: The New World of 3D Printing, John Wiley & Sons, Indianapolis, 2013

[5] L. A. Hockaday; K. H. Kang; N. W. Colangelo et al. Rapid 3D printing of anatomically accurate and mechanically heterogeneous aortic valve hydrogel scaffolds, Biofabrication, Volume 4 (2012) no. 3, 035005 | DOI

[6] C. T. Leondes Computer Aided and Integrated Manufacturing Systems: Volume 1: Computer Techniques, World Scientific Publishing Company, Singapore, 2003 | DOI

[7] C. Boutin; F. X. Becot Theory and experiments on poro-acoustics with inner resonators, Wave Motion, Volume 54 (2015), pp. 76-99 | DOI | MR

[8] J. O. Rourke Polyhedra, How to Fold It: The Mathematics of Linkages, Origami, and Polyhedra, Cambridge University Press, New York, 2011, pp. 99-100 | MR

[9] I. Berinskii; V. A. Eremeyev On dynamics of origami-inspired rod, Int. J. Eng. Sci., Volume 193 (2023), 103944 | DOI | Zbl

[10] E. Turco; E. Barchiesi; F. dell’Isola Nonlinear dynamics of origami metamaterials: energetic discrete approach accounting for bending and in-plane deformation of facets, Z. für Angew. Math. Phys., Volume 74 (2022) no. 1, pp. 1-29 | DOI | Zbl

[11] H. Yasuda; J. Yang Reentrant origami-based metamaterials with negative Poissons ratio and bistability, Phys. Rev. Lett., Volume 114 (2015) no. 18, 185502 | DOI

[12] E. Turco; E. Barchiesi; A. Causin; F. dell’Isola; M. Solci Harnessing unconventional buckling of tube origami metamaterials based on Kresling pattern, Int. J. Solids Struct., Volume 300 (2024), 112925 | DOI

[13] N. Nejadsadeghi; F. Hild; A. Misra Parametric experimentation to evaluate chiral bars representative of granular motif, Int. J. Mech. Sci., Volume 221 (2022), 107184 | DOI

[14] I. Giorgio; F. Hild; E. Gerami; F. dell’Isola; A. Misra Experimental verification of 2D Cosserat chirality with stretch-micro-rotation coupling in orthotropic metamaterials with granular motif, Mech. Res. Commun., Volume 126 (2022), 104020 | DOI

[15] I. Giorgio; F. dell’Isola; A. Misra Chirality in 2D Cosserat media related to stretch-micro-rotation coupling with links to granular micromechanics, Int. J. Solids Struct., Volume 202 (2020), pp. 28-38 | DOI

[16] Y. Rahali; V. A. Eremeyev; J. F. Ganghoffer Surface effects of network materials based on strain gradient homogenized media, Math. Mech. Solids, Volume 25 (2019) no. 2, pp. 389-406 | DOI | MR | Zbl

[17] V. A. Eremeyev Two- and three-dimensional elastic networks with rigid junctions: modeling within the theory of micropolar shells and solids, Acta Mech., Volume 230 (2019) no. 11, pp. 3875-3887 | DOI | MR | Zbl

[18] V. A. Eremeyev; I. Elishakoff On rotary inertia of microstuctured beams and variations thereof, Mech. Res. Commun., Volume 135 (2024), 104239 | DOI

[19] D. Del Vescovo; I. Giorgio Dynamic problems for metamaterials: Review of existing models and ideas for further research, Int. J. Eng. Sci., Volume 80 (2014), pp. 153-172 | DOI | MR | Zbl

[20] F. dell’Isola; P. Seppecher; M. Spagnuolo et al. Advances in pantographic structures: design, manufacturing, models, experiments and image analyses, Contin. Mech. Thermodyn., Volume 31 (2019) no. 4, pp. 1231-1282 | DOI

[21] F. dell’Isola; D. Steigmann; A. Della Corte Synthesis of fibrous complex structures: designing microstructure to deliver targeted macroscale response, Appl. Mech. Rev., Volume 67 (2015) no. 6, 060804 | DOI

[22] E. Barchiesi; M. Spagnuolo; L. Placidi Mechanical metamaterials: a state of the art, Math. Mech. Solids, Volume 24 (2018) no. 1, pp. 212-234 | DOI | MR | Zbl

[23] R. Fedele; L. Placidi; F. Fabbrocino A review of inverse problems for generalized elastic media: formulations, experiments, synthesis, Contin. Mech. Thermodyn., Volume 36 (2024), pp. 1413-1453 | DOI | MR

[24] I. Giorgio; D. Del Vescovo Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators, Math. Mech. Complex Syst., Volume 7 (2019) no. 2, pp. 159-174 | DOI | MR | Zbl

[25] I. Giorgio Lattice shells composed of two families of curved Kirchhoff rods: an archetypal example, topology optimization of a cycloidal metamaterial, Contin. Mech. Thermodyn., Volume 33 (2020) no. 4, pp. 1063-1082 | DOI | MR

[26] I. Giorgio A variational formulation for one-dimensional linear thermoviscoelasticity, Math. Mech. Complex Syst., Volume 9 (2021) no. 4, pp. 397-412 | DOI | MR | Zbl

[27] A. Ciallella; F. D’Annibale; D. Del Vescovo; I. Giorgio Deformation patterns in a second-gradient lattice annular plate composed of “Spira mirabilis” fibers, Contin. Mech. Thermodyn., Volume 35 (2022) no. 4, pp. 1561-1580 | DOI | MR

[28] S. Eugster; F. dell’Isola; D. Steigmann Continuum theory for mechanical metamaterials with a cubic lattice substructure, Math. Mech. Complex Syst., Volume 7 (2019) no. 1, pp. 75-98 | DOI | Zbl

[29] E. Turco; E. Barchiesi; A. Causin; F. dell’Isola; M. Solci Kresling tube metamaterial exhibits extreme large-displacement buckling behavior, Mech. Res. Commun., Volume 134 (2023), 104202 | DOI

[30] E. Barchiesi; F. dell’Isola; P. Seppecher; E. Turco A beam model for duoskelion structures derived by asymptotic homogenization and its application to axial loading problems, Eur. J. Mech. - A/Solids, Volume 98 (2023), 104848 | DOI | Zbl

[31] R. McAvoy; E. Barchiesi Towards the Galerkin approximation of tetraskelion metamaterials, Contin. Mech. Thermodyn., Volume 37 (2024) no. 1, 6 | DOI | MR | Zbl

[32] R. C. McAvoy; D. J. Steigmann Incremental deformations and bifurcation of elastic solids reinforced by fibers with intrinsic extensional, flexural, and torsional elasticity, J. Appl. Mech., Volume 92 (2024) no. 1, 011006 | DOI

[33] M. De Angelo; E. Barchiesi; I. Giorgio; B. E. Abali Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling, Arch. Appl. Mech., Volume 89 (2019) no. 7, pp. 1333-1358 | DOI

[34] E. Turco Tools for the numerical solution of inverse problems in structural mechanics: review and research perspectives, Eur. J. Environ. Civil Eng., Volume 21 (2016) no. 5, pp. 509-554 | DOI

[35] I. Giorgio Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures, Z. für Angew. Math. Phys., Volume 67 (2016) no. 4, 95 | DOI | MR | Zbl

[36] E. Turco; E. Barchiesi; I. Giorgio; F. dell’Isola A Lagrangian Hencky-type non-linear model suitable for metamaterials design of shearable and extensible slender deformable bodies alternative to Timoshenko theory, Int. J. Non-Linear Mech., Volume 123 (2020), 103481 | DOI

[37] F. dell’Isola; T. Lekszycki; M. Pawlikowski; R. Grygoruk; L. Greco Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence, Z. für Angew. Math. Phys., Volume 66 (2015) no. 6, pp. 3473-3498 | DOI

[38] E. Barchiesi; S. Mavrikos; I. Giorgio; C. Grigoropoulos; M. Farsari; F. dell’Isola; G. Zyla Complex mechanical properties of 3D micro-metric pantographic metamaterials fabricated by two-photon polymerization, Contin. Mech. Thermodyn., Volume 36 (2024) no. 6, pp. 1755-1766 | DOI

[39] L. Placidi; M. G. El Sherbiny; P. Baragatti Experimental investigation for the existence of frequency band gap in a microstructure model, Math. Mech. Complex Syst., Volume 9 (2022) no. 4, pp. 413-421 | DOI | MR

[40] M. E. Yildizdag; E. Barchiesi; F. dell’Isola Three-point bending test of pantographic blocks: numerical and experimental investigation, Math. Mech. Solids, Volume 25 (2020) no. 10, pp. 1965-1978 | DOI | Zbl

[41] F. dell’Isola; I. Giorgio; M. Pawlikowski; N. L. Rizzi Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium, Proc. R. Soc. A: Math. Phys. Eng. Sci., Volume 472 (2016) no. 2185, 20150790 | DOI

[42] A. Misra; N. Nejadsadeghi; M. De Angelo; L. Placidi Chiral metamaterial predicted by granular micromechanics: verified with 1D example synthesized using additive manufacturing, Contin. Mech. Thermodyn., Volume 32 (2020) no. 5, pp. 1497-1513 | DOI | MR

[43] N. Nejadsadeghi; M. De Angelo; A. Misra; F. Hild Multiscalar DIC analyses of granular string under stretch reveal non-standard deformation mechanisms, Int. J. Solids Struct., Volume 239–240 (2022), 111402 | DOI

[44] V. G. Veselago Electrodynamics of materials with negative index of refraction, Phys.-Uspekhi, Volume 46 (2003) no. 7, pp. 764-768 | DOI

[45] R. A. Shelby; D. R. Smith; S. Schultz Experimental verification of a negative index of refraction, Science, Volume 292 (2001) no. 5514, pp. 77-79 | DOI

[46] F. Martinez; M. Maldovan Metamaterials: optical, acoustic, elastic, heat, mass, electric, magnetic, and hydrodynamic cloaking, Mater. Today Phys., Volume 27 (2022), 100819 | DOI

[47] X. Peng; J. Li; S. A. Cummer Ultra-broadband low-frequency high-efficiency acoustic energy harvesting with metamaterial-enhanced loudspeakers, Appl. Phys. Lett., Volume 123 (2023) no. 7, 073903 | DOI

[48] A. Grillo; S. Federico; G. Wittum Growth, mass transfer, and remodeling in fiber-reinforced, multi-constituent materials, Int. J. Non-Linear Mech., Volume 47 (2012) no. 2, pp. 388-401 | DOI

[49] A. Grillo; S. Di Stefano An a posteriori approach to the mechanics of volumetric growth, Math. Mech. Complex Syst., Volume 11 (2023) no. 1, pp. 57-86 | DOI | MR | Zbl

[50] A. Grillo; S. Di Stefano Comparison between different viewpoints on bulk growth mechanics, Math. Mech. Complex Syst., Volume 11 (2023) no. 2, pp. 287-311 | DOI | MR | Zbl

[51] M. Tepedino The mechanical role of the periodontal ligament for developing mathematical models in orthodontics, Math. Mech. Complex Syst., Volume 11 (2023) no. 4, pp. 525-539 | DOI | MR | Zbl

[52] I. Giorgio; U. Andreaus; F. dell’Isola; T. Lekszycki Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts, Extreme Mech. Lett., Volume 13 (2017), pp. 141-147 | DOI

[53] I. Giorgio; M. Spagnuolo; U. Andreaus; D. Scerrato; A. M. Bersani In-depth gaze at the astonishing mechanical behavior of bone: A review for designing bio-inspired hierarchical metamaterials, Math. Mech. Solids, Volume 26 (2021) no. 7, pp. 1074-1103 | DOI | MR | Zbl

[54] V. Beachley; V. Kasyanov; A. Nagy-Mehesz et al. The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds, J. Tissue Eng., Volume 5 (2014), pp. 1-11 | DOI

[55] C. Boutin; F. dell’Isola; I. Giorgio; L. Placidi Linear pantographic sheets: asymptotic micro–macro models identification, Math. Mech. Complex Syst., Volume 5 (2017) no. 2, pp. 127-162 | DOI | Zbl

[56] V. A. Eremeyev; F. dell’Isola Weak solutions within the gradient-incomplete strain-gradient elasticity, Lobachevskii J. Math., Volume 41 (2020) no. 10, pp. 1992-1998 | DOI | Zbl

[57] V. A. Eremeyev Strong ellipticity conditions and infinitesimal stability within nonlinear strain gradient elasticity, Mech. Res. Commun., Volume 117 (2021), 103782 | DOI | Zbl

[58] V. A. Eremeyev; M. Lazar Strong ellipticity within the Toupin–Mindlin first strain gradient elasticity theory, Mech. Res. Commun., Volume 124 (2022), 103944 | DOI | Zbl

[59] V. A. Eremeyev; F. S. Alzahrani; A. Cazzani; F. dell’Isola; T. Hayat; E. Turco; V. Konopińska-Zmysłowska On existence and uniqueness of weak solutions for linear pantographic beam lattices models, Contin. Mech. Thermodyn., Volume 31 (2019) no. 6, pp. 1843-1861 | DOI

[60] K. K. Mandadapu; B. E. Abali; P. Papadopoulos On the polar nature and invariance properties of a thermomechanical theory for continuum-on-continuum Homogenization, Math. Mech. Solids, Volume 26 (2021) no. 11, pp. 1581-1598 | DOI | MR | Zbl

[61] V. A. Eremeyev Local material symmetry group for first- and second-order strain gradient fluids, Math. Mech. Solids, Volume 26 (2021) no. 8, pp. 1173-1190 | DOI | MR | Zbl

[62] M. Olive; N. Auffray Symmetry classes in piezoelectricity from second-order symmetries, Math. Mech. Complex Syst., Volume 9 (2021) no. 1, pp. 77-105 | DOI | MR | Zbl

[63] F. dell’Isola; P. Seppecher; A. Della Corte Higher gradient theories and their foundations, Encyclopedia of Continuum Mechanics, Springer, Berlin, Heidelberg, 2020, pp. 1090-1099 | DOI

[64] F. dell’Isola; A. Della Corte; I. Giorgio Higher-gradient continua: the legacy of Piola, Mindlin, Sedov and Toupin and some future research perspectives, Math. Mech. Solids, Volume 22 (2017) no. 4, pp. 852-872 | DOI | MR | Zbl

[65] F. dell’Isola; P. Seppecher; L. Placidi et al. Least action and virtual work principles for the formulation of generalized continuum models, Discrete and Continuum Models for Complex Metamaterials, Cambridge University Press, Cambridge, 2020, pp. 327-394 | DOI

[66] S. R. Eugster; F. Dell’Isola Exegesis of the Introduction and Sect. I from “Fundamentals of the Mechanics of Continua”** by E. Hellinger, ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. Mech., Volume 97 (2017) no. 4, pp. 477-506 | DOI | Zbl

[67] S. R. Eugster; F. Dell’Isola Exegesis of Sect. II and III. A from “Fundamentals of the Mechanics of Continua” by E. Hellinger, ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. Mech., Volume 98 (2018) no. 1, pp. 31-68 | DOI | MR | Zbl

[68] S. R. Eugster; F. dell’Isola Exegesis of Sect. III. B from “Fundamentals of the Mechanics of Continua” by E. Hellinger, ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. Mech., Volume 98 (2018) no. 1, pp. 69-105 | DOI | MR

[69] F. Dell’Isola; G. Maier; U. Perego; U. Andreaus; R. Esposito; S. Forest The Complete Works of Gabrio Piola: Volume I: Commented English Translation, Springer International Publishing, Cham, Heidelberg, New York, Dordrecht, London, 2014 | DOI

[70] F. dell’Isola; U. Andreaus; L. Placidi At the origins and in the vanguard of peridynamics, non-local and higher-gradient continuum mechanics: An underestimated and still topical contribution of Gabrio Piola, Math. Mech. Solids, Volume 20 (2014) no. 8, pp. 887-928 | DOI | MR | Zbl

[71] S. R. Eugster; F. dell’Isola; R. Fedele; P. Seppecher Piola transformations in second-gradient continua, Mech. Res. Commun., Volume 120 (2022), 103836 | DOI

[72] F. dell’Isola; A. Misra Principle of virtual work as foundational framework for metamaterial discovery and rational design, C. R. Méc., Volume 351 (2023) no. S3, pp. 1-25 | DOI

[73] F. dell’Isola; M. Stilz The «  materialization  » of forces: why confounding mathematical concept and physical entity makes the design of metamaterials arduous, ZAMM - J. Appl. Math. Mech./Z. für Angew. Math. Mech., Volume 103 (2022) no. 2, e202200433 | DOI

[74] U. Mühlich; B. E. Abali; F. dell’Isola Commented translation of Erwin Schrödingers paper On the dynamics of elastically coupled point systems (Zur Dynamik elastisch gekoppelter Punktsysteme), Math. Mech. Solids, Volume 26 (2020) no. 1, pp. 133-147 | DOI | Zbl

[75] G. P. Berman; F. M. Izrailev The Fermi–Pasta–Ulam problem: fifty years of progress, Chaos: An Interdiscip. J. Nonlinear Sci., Volume 15 (2005) no. 1, 015104 | DOI | MR | Zbl

[76] F. dell’Isola; D. J. Steigmann Discrete and Continuum Models for Complex Metamaterials, Cambridge University Press, Cambridge, 2020 | DOI

[77] J.-J. Alibert; P. Seppecher; F. dell’Isola Truss modular beams with deformation energy depending on higher displacement gradients, Math. Mech. Solids, Volume 8 (2003) no. 1, pp. 51-73 | DOI | Zbl

[78] P. Seppecher; J.-J. Alibert; F. dell’Isola Linear elastic trusses leading to continua with exotic mechanical interactions, J. Phys.: Conf. Ser., Volume 319 (2011), 012018 | DOI

[79] C. Pideri; P. Seppecher A second gradient material resulting from the homogenization of an heterogeneous linear elastic medium, Contin. Mech. Thermodyn., Volume 9 (1997) no. 5, pp. 241-257 | DOI | MR | Zbl

[80] S. Forest Mechanics of generalized continua: construction by homogenizaton, J. Phys. IV, Volume 08 (1998) no. PR4, p. Pr4-39–Pr4-48 | DOI

[81] B. E. Abali; W. H. Müller; F. dell’Isola Theory and computation of higher gradient elasticity theories based on action principles, Arch. Appl. Mech., Volume 87 (2017) no. 9, pp. 1495-1510 | DOI

[82] F. dell’Isola; P. Seppecher; J.-J. Alibert et al. Pantographic metamaterials: an example of mathematically driven design and of its technological challenges, Contin. Mech. Thermodyn., Volume 31 (2018) no. 4, pp. 851-884 | DOI

[83] E. Barchiesi; S. R. Eugster; F. dell’Isola; F. Hild Large in-plane elastic deformations of bi-pantographic fabrics: asymptotic homogenization and experimental validation, Math. Mech. Solids, Volume 25 (2019) no. 3, pp. 739-767 | DOI | Zbl

[84] E. Turco; F. dell’Isola; A. Cazzani; N. L. Rizzi Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models, Z. für Angew. Math. Phys., Volume 67 (2016) no. 4, 85 | DOI | Zbl

[85] G. Aydin; B. C. Sarar; M. E. Yildizdag; B. E. Abali Investigating infill density and pattern effects in additive manufacturing by characterizing metamaterials along the strain-gradient theory, Math. Mech. Solids, Volume 27 (2022) no. 10, pp. 2002-2016 | DOI | Zbl

[86] B. C. Sarar; M. E. Yildizdag; B. E. Abali Comparison of homogenization techniques in strain gradient elasticity for determining material parameters, Sixty Shades of Generalized Continua, Springer International Publishing, Cham, 2023, pp. 631-644 | DOI

[87] E. Turco; A. Misra; M. Pawlikowski; F. dell’Isola; F. Hild Enhanced Piola–Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments, Int. J. Solids Struct., Volume 147 (2018), pp. 94-109 | DOI

[88] J.-J. Alibert; E. Barchiesi; F. dell’Isola; P. Seppecher A class of one dimensional periodic microstructures exhibiting effective Timoshenko Beam behavior, ESAIM Control Optim. Calc. Var., Volume 29 (2023), 53 | DOI | Zbl

[89] H. Abdoul-Anziz; P. Seppecher Strain gradient and generalized continua obtained by homogenizing frame lattices, Math. Mech. Complex Syst., Volume 6 (2018) no. 3, pp. 213-250 | DOI | MR | Zbl

[90] H. Abdoul-Anziz; P. Seppecher; C. Bellis Homogenization of frame lattices leading to second gradient models coupling classical strain and strain-gradient terms, Math. Mech. Solids, Volume 24 (2019) no. 12, pp. 3976-3999 | DOI | MR | Zbl

[91] F. dell’Isola; S. Moschini; E. Turco Towards the synthesis of planar beams whose deformation energy depends on the third gradient of displacement, Math. Mech. Complex Syst., Volume 12 (2024) no. 4, pp. 573-597 | DOI | Zbl

[92] L. Murcia Terranova Planar one dimensional continua whose energy depends on the gradient of curvature: an overview of their applications in metamaterials design, Math. Mech. Complex Syst. (2025) (to appear)

[93] F. dell’Isola; A. Della Corte; A. Battista; E. Barchiesi Extensible beam models in large deformation under distributed loading: a numerical study on multiplicity of solutions, Springer International Publishing, Cham (2019), pp. 19-41 | DOI

[94] A. Bersani; F. dell’Isola; P. Seppecher Lagrange multipliers in infinite dimensional spaces, examples of application, Encyclopedia of Continuum Mechanics, Springer, Berlin, Heidelberg, 2019, pp. 1-8 | DOI

[95] E. Riks An incremental approach to the solution of snapping and buckling problems, Int. J. Solids Struct., Volume 15 (1979) no. 7, pp. 529-551 | DOI | MR | Zbl

[96] E. Turco; P. Caracciolo Elasto-plastic analysis of Kirchhoff plates by high simplicity finite elements, Comput. Meth. Appl. Mech. Eng., Volume 190 (2000) no. 5–7, pp. 691-706 | DOI | Zbl

[97] M. J. Clarke; G. J. Hancock A study of incrementaliterative strategies for nonlinear analyses, Int. J. Numer. Meth. Eng., Volume 29 (1990) no. 7, pp. 1365-1391 | DOI

Cité par Sources :

Commentaires - Politique