[Simulations multiphysiques en biomédical : interaction fluide-structure couplée au transfert de masse]
We propose numerical schemes to study complex multiphysics problems involving fluid–structure interaction (FSI) coupled with mass/heat transfer (HMT). We primarily use the Lattice Boltzmann Method (LBM) to compute fluid flow and the advection–diffusion–reaction of chemical entities. The dynamics and deformation of structures are computed using the Lattice Spring Method (LSM), and we implement the Immersed Boundary Method (IBM) to achieve two-way coupling of fluid–structure interaction. For biomedical applications, we study controlled drug delivery from particles subjected to flow, passage of soft particles through microfluidic constrictions, performance of artificial pancreas-on-chip, as well as contraction–relaxation of lymphatic vessels and the opening–closing of their valves.
On propose des schémas numériques pour étudier des problèmes multiphysiques complexes impliquant l’interaction fluide-structure (IFS) couplée au transfert de masse et de chaleur (TMC). On utilise principalement la méthode de Boltzmann sur réseau (LBM) pour simuler l’écoulement des fluides ainsi que l’advection-diffusion-réaction d’entités chimiques. La dynamique et la déformation des structures sont calculées à l’aide de la méthode des ressorts sur réseau (LSM), et on met en œuvre la méthode de la frontière immergée (IBM) pour assurer le couplage bidirectionnel de l’interaction fluide-structure. Dans le cadre des applications biomédicales, on étudie la libération contrôlée de médicaments à partir de particules soumises à un écoulement, le passage de particules déformables à travers des constrictions microfluidiques, la performance de pancréas artificiels sur puce, ainsi que la contraction-relaxation des vaisseaux lymphatiques et l’ouverture-fermeture de leurs valves.
Révisé le :
Accepté le :
Publié le :
Mots-clés : Mécanique des fluides numérique, IFS, Simulations multiphysiques, Calcul haute performance, Biofluides, Génie biomédicale
Badr Kaoui 1

@article{CRMECA_2025__353_G1_779_0, author = {Badr Kaoui}, title = {Multiphysics simulations in biomedical: fluid{\textendash}structure interaction coupled with mass transfer}, journal = {Comptes Rendus. M\'ecanique}, pages = {779--790}, publisher = {Acad\'emie des sciences, Paris}, volume = {353}, year = {2025}, doi = {10.5802/crmeca.304}, language = {en}, }
Badr Kaoui. Multiphysics simulations in biomedical: fluid–structure interaction coupled with mass transfer. Comptes Rendus. Mécanique, Volume 353 (2025), pp. 779-790. doi: 10.5802/crmeca.304
[1] The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, Oxford, 2001 | DOI | MR | Zbl
[2] Lattice Boltzmann Modeling, Springer, Berlin, 2006 | DOI
[3] Lattice–Boltzmann method for complex flows, Annu. Rev. Fluid Mech., Volume 42 (2010), pp. 439-472 | DOI | Zbl
[4] On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. Fluids, Volume 9 (1997), pp. 1591-1598 | DOI | MR | Zbl
[5] Flow and mass transfer around a core-shell reservoir, Phys. Rev. E, Volume 95 (2017), 063310 | DOI
[6] Computer simulations of drug release from a liposome into the bloodstream, Eur. Phys. J. E, Volume 41 (2018) no. 2, 20 | DOI
[7] Algorithm to implement unsteady jump boundary conditions within the lattice Boltzmann method, Eur. Phys. J. E, Volume 43 (2020), 23 | DOI
[8] Two-dimensional lattice-Boltzmann simulations of vesicles with viscosity contrast, Rheol. Acta, Volume 55 (2016) no. 6, pp. 465-475 | DOI
[9] Mass transfer from a sheared spherical rigid capsule, Phys. Fluids, Volume 34 (2022), 031902 | DOI
[10] Lattice models in micromechanics, Appl. Mech. Rev., Volume 55 (2002) no. 1, pp. 35-60 | MR | DOI
[11] Comparison between spring network models and continuum constitutive laws: application to the large deformation of a capsule in shear flow, Phys. Rev. E, Volume 83 (2011) no. 4, 041918 | DOI
[12] Forced transport of deformable containers through narrow constrictions, Phys. Rev. E, Volume 90 (2014), 033006 | DOI
[13] Interplay of inertia and deformability on rheological properties of a suspension of capsules, J. Fluid Mech., Volume 751 (2014), pp. 725-745 | DOI
[14] Squeezing multiple soft particles into a constriction: transition to clogging, Phys. Rev. E, Volume 104 (2021), 065101 | DOI
[15] The immersed boundary method, Acta Numer., Volume 11 (2002), pp. 479-517 | MR | Zbl | DOI
[16] Immersed boundary methods: historical perspective and future outlook, Annu. Rev. Fluid Mech., Volume 55 (2023), pp. 129-155 | DOI
[17] Origin and evolution of immersed boundary methods in computational fluid dynamics, Phys. Rev. Fluids, Volume 8 (2023), 100501 | DOI
[18] Modelling vesicle dynamics in extended geometries and in microfluidic devices, PhD thesis, University of Joseph Fourier, Grenoble, France (2009)
[19] Two-dimensional vesicle dynamics under shear flow: effect of confinement, Phys. Rev. E, Volume 83 (2011), 066319 | DOI
[20] Interaction fluide-structure couplée aux phenomènes de transport dans des systèmes biologiques et biomédicaux, Habilitation à Diriger des Recherches (HDR), Université de Technologie de Compiègne, Compiègne, France (2022)
[21] Transfert de masse non-stationnaire depuis des particules sous écoulement, C. R. Méca., Volume 351 (2023), pp. 1-12 | DOI
[22] Microwell-based pancreas-on-chip model enhances genes expression and functionality of rat islets of Langerhans, Mol. Cell. Endocrinol., Volume 514 (2020), 110892 | DOI
[23] The lymphatic system in disease processes and cancer progression, Annu. Rev. Biomed. Eng., Volume 18 (2016), pp. 125-158 | DOI
Cité par Sources :
Commentaires - Politique