Comptes Rendus
Article de recherche
Blood flow visualization and quantification in the carotid vascular tree by phase contrast MRI
[Visualisation et quantification du flux sanguin dans l’arbre vasculaire carotidien par IRM en contraste de phase]
Comptes Rendus. Mécanique, Volume 354 (2026), pp. 35-52

Purpose. The objective is to build a phase contrast (PC) MRI protocol, consistent with clinical practice, to provide a 3D blood flow visualization and quantification of hemodynamic parameters in the complete carotid vascular tree.

Methods. The protocol composed of 2D and 4D PC-MRI sequences was applied on 6 volunteers and then on one patient diagnosed with facial cancer to prove the feasibility of clinical translation. The vessel geometry was reconstructed from the 4D sequences and the hemodynamic parameters quantified in the common, internal and external carotids and in the facial artery. Wall shear stresses (WSS) were quantified from the 2D PC-MRI sequences to benefit from their higher resolution.

Results. Time evolution of the three-dimensional blood flow velocity and vorticity fields was successfully obtained in all the branches of the carotid vascular tree despite the large range of sizes. Consistent maps of blood flow distribution were provided by normalizing the local blood flows by that of the common carotid artery. They indicated that 72.4% (±3.9%) of blood flows into the internal carotid. WSS is higher in the internal (0.95 Pa at peak systole) than in the external carotid (0.53 Pa) and facial artery (0.15 Pa).

Conclusion. A PC-MRI protocol, applicable to patients, was designed to quantify hemodynamic parameters in vessels ranging from a few millimeters to the centimeter in diameter. It provided a complete characterization of the hemodynamic condition evolution along the carotid vascular tree, and reference values to be compared to in case of pathology.

Objectif. L’objectif est de développer un protocole d’IRM en contraste de phase (PC), compatible avec la pratique clinique, permettant une visualisation tridimensionnelle du flux sanguin et la quantification de paramètres hémodynamiques dans l’ensemble de l’arbre vasculaire carotidien.

Méthodes. Le protocole, composé de séquences d’IRM PC 2D et 4D, a été appliqué à 6 volontaires puis à un patient diagnostiqué avec un cancer facial afin de démontrer la faisabilité de la transposition clinique. La géométrie vasculaire a été reconstruite à partir des séquences 4D et les paramètres hémodynamiques ont été quantifiés dans les carotides commune, interne et externe, ainsi que dans l’artère faciale. Les contraintes de cisaillement pariétal (WSS) ont été quantifiées à partir des séquences PC-IRM 2D afin de bénéficier de leur résolution plus élevée.

Résultats. L’évolution temporelle des champs tridimensionnels de vitesse du flux sanguin et de vorticité a été obtenue avec succès dans toutes les branches de l’arbre vasculaire carotidien, malgré la grande variabilité des calibres vasculaires. Des cartes cohérentes de la distribution du flux sanguin ont été fournies en normalisant les flux locaux par celui de la carotide commune. Elles indiquent que 72,4 % (±3,9 %) du flux sanguin est dirigé vers la carotide interne. Les WSS sont plus élevées dans la carotide interne (0,95 Pa au pic systolique) que dans la carotide externe (0,53 Pa) et l’artère faciale (0,15 Pa).

Conclusion. Un protocole d’IRM en contraste de phase, applicable aux patients, a été conçu pour quantifier les paramètres hémodynamiques dans des vaisseaux dont le diamètre varie de quelques millimètres à un centimètre. Il permet une caractérisation complète de l’évolution des conditions hémodynamiques le long de l’arbre vasculaire carotidien et fournit des valeurs de référence pouvant être utilisées à des fins de comparaison en cas de pathologie.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.320
Keywords: Blood flow, MRI, Phase contrast, Carotid, Wall shear stress
Mots-clés : Flux sanguin, IRM, Contraste de phase, Carotide, Contrainte de cisaillement pariétal

Gwenaël Pagé  1   ; Jérémie Bettoni  1   ; Olivier Balédent  1   ; Anne-Virginie Salsac  2

1 Chimère Laboratory, University Hospital of Amiens-Picardie, Amiens, France
2 Biomechanics and Bioengineering Laboratory (UMR 7338), Université de Technologie de Compiègne - CNRS, 60203 Compiègne, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2026__354_G1_35_0,
     author = {Gwena\"el Pag\'e and J\'er\'emie Bettoni and Olivier Bal\'edent and Anne-Virginie Salsac},
     title = {Blood flow visualization and quantification in the carotid vascular tree by phase contrast {MRI}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {35--52},
     year = {2026},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {354},
     doi = {10.5802/crmeca.320},
     language = {en},
}
TY  - JOUR
AU  - Gwenaël Pagé
AU  - Jérémie Bettoni
AU  - Olivier Balédent
AU  - Anne-Virginie Salsac
TI  - Blood flow visualization and quantification in the carotid vascular tree by phase contrast MRI
JO  - Comptes Rendus. Mécanique
PY  - 2026
SP  - 35
EP  - 52
VL  - 354
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.320
LA  - en
ID  - CRMECA_2026__354_G1_35_0
ER  - 
%0 Journal Article
%A Gwenaël Pagé
%A Jérémie Bettoni
%A Olivier Balédent
%A Anne-Virginie Salsac
%T Blood flow visualization and quantification in the carotid vascular tree by phase contrast MRI
%J Comptes Rendus. Mécanique
%D 2026
%P 35-52
%V 354
%I Académie des sciences, Paris
%R 10.5802/crmeca.320
%G en
%F CRMECA_2026__354_G1_35_0
Gwenaël Pagé; Jérémie Bettoni; Olivier Balédent; Anne-Virginie Salsac. Blood flow visualization and quantification in the carotid vascular tree by phase contrast MRI. Comptes Rendus. Mécanique, Volume 354 (2026), pp. 35-52. doi: 10.5802/crmeca.320

[1] J.-J. Chiu; S. Chien Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives, Physiol. Rev., Volume 91 (2011) no. 1, pp. 327-387 | DOI

[2] M. A. Gimbrone; G. García-Cardeña Vascular endothelium, hemodynamics, and the pathobiology of atherosclerosis, Cardiovasc. Pathol. Off. J. Soc. Cardiovasc. Pathol., Volume 22 (2013) no. 1, pp. 9-15 | DOI

[3] D. N. Ku; D. P. Giddens; C. K. Zarins; S. Glagov Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arterioscler. Dallas Tex, Volume 5 (1985) no. 3, pp. 293-302 | DOI

[4] C. K. Zarins; D. P. Giddens; B. K. Bharadvaj; V. S. Sottiurai; R. F. Mabon; S. Glagov Carotid bifurcation atherosclerosis. Quantitative correlation of plaque localization with flow velocity profiles and wall shear stress, Circ. Res., Volume 53 (1983) no. 4, pp. 502-514 | DOI

[5] A. Kamiya; T. Togawa Adaptive regulation of wall shear stress to flow change in the canine carotid artery, Am. J. Physiol., Volume 239 (1980) no. 1, p. H14-H21 | DOI

[6] J. D. Humphrey; E. R. Dufresne; M. A. Schwartz Mechanotransduction and extracellular matrix homeostasis, Nat. Rev. Mol. Cell Biol., Volume 15 (2014) no. 12, pp. 802-812 | DOI

[7] I. Marshall; S. Zhao; P. Papathanasopoulou; P. Hoskins; X. Y. Xu MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models, J. Biomech., Volume 37 (2004) no. 5, pp. 679-687 | DOI

[8] M. Markl; F. Wegent; T. Zech; S. Bauer; C. Strecker; M. Schumacher; C. Weiller; J. Hennig; A. Harloff In vivo wall shear stress distribution in the carotid artery effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy, Circ. Cardiovasc. Imaging, Volume 3 (2010) no. 6, pp. 647-655 | DOI

[9] S.-W. Lee; L. Antiga; J. D. Spence; D. A. Steinman Geometry of the carotid bifurcation predicts its exposure to disturbed flow, Stroke, Volume 39 (2008) no. 8, pp. 2341-2347 | DOI

[10] C.-H. Li; B.-L. Gao; J.-W. Wang; J.-F. Liu; H. Li; S.-T. Yang Hemodynamic factors affecting carotid sinus atherosclerotic stenosis, World Neurosurg., Volume 121 (2019), p. e262-e276 | DOI

[11] A. Dell’Amore; F. Castriota; S. Calvi; D. Magnano; G. Noera; M. Lamarra Post-traumatic carotid-jugular arterio-venous fistula, Heart Lung Circ., Volume 18 (2009) no. 4, 293 | DOI

[12] S. Shah-Becker; M. Pennock; L. Sinoway; D. Goldenberg; N. Goyal Baroreceptor reflex failure: review of the literature and the potential impact on patients with head and neck cancer, Head Neck, Volume 39 (2017) no. 10, pp. 2135-2141 | DOI

[13] L. J. King; S. N. Hasnain; J. A. Webb; J. E. Kingston; E. A. Shafford; T. A. Lister; J. Shamash; R. H. Reznek Asymptomatic carotid arterial disease in young patients following neck radiation therapy for hodgkin lymphoma, Radiology, Volume 213 (1999) no. 1, pp. 167-172 | DOI

[14] B. Yazici; B. Erdoğmuş; A. Tugay Cerebral blood flow measurements of the extracranial carotid and vertebral arteries with Doppler ultrasonography in healthy adults, Diagn. Interv. Radiol., Volume 11 (2005) no. 4, pp. 195-198

[15] A. H. Brandt; K. L. Hansen; C. Ewertsen; S. Holbek; J. B. Olesen; R. Moshavegh; C. Thomsen; J. A. Jensen; M. B. Nielsen A comparison study of vector velocity, spectral doppler and magnetic resonance of blood flow in the common carotid artery, Ultrasound Med. Biol., Volume 44 (2018) no. 8, pp. 1751-1761 | DOI

[16] I. Marshall; P. Papathanasopoulou; K. Wartolowska Carotid flow rates and flow division at the bifurcation in healthy volunteers, Physiol. Meas., Volume 25 (2004) no. 3, 691 | DOI

[17] A. Harloff; T. Zech; F. Wegent; C. Strecker; C. Weiller; M. Markl Comparison of blood flow velocity quantification by 4D flow MR imaging with ultrasound at the carotid bifurcation, AJNR Am. J. Neuroradiol., Volume 34 (2013) no. 7, pp. 1407-1413 | DOI

[18] A. f. Stalder; M. f. Russe; A. Frydrychowicz; J. Bock; J. Hennig; M. Markl Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters, Magn. Reson. Med., Volume 60 (2008) no. 5, pp. 1218-1231 | DOI

[19] P. van Ooij; W. V. Potters; A. Guédon; J. J. Schneiders; H. A. Marquering; C. B. Majoie; E. vanBavel; A. J. Nederveen Wall shear stress estimated with phase contrast MRI in an in vitro and in vivo intracranial aneurysm, J. Magn. Reson. Imaging, Volume 38 (2013) no. 4, pp. 876-884 | DOI

[20] J. Bettoni; G. Pagé; A. V. Salsac; J. M. Constans; S. Testelin; B. Devauchelle; O. Balédent; S. Dakpé Quantitative assessment of the flow distribution in the branches of the external carotid by non-injected flow MRI, Dentomaxillofac. Radiol., Volume 47 (2018) no. 8, 20180153 | DOI

[21] J. Bettoni; G. Pagé; A. V. Salsac; J. M. Constans; S. Testelin; B. Devauchelle; O. Balédent; S. Dakpé 3T non-injected phase-contrast MRI sequences for the mapping of the external carotid branches: In vivo radio-anatomical pilot study for feasibility analysis, J. Cranio-Maxillofac. Surg., Volume 46 (2018) no. 1, pp. 98-106 | DOI

[22] M. Markl; P. J. Kilner; T. Ebbers Comprehensive 4D velocity mapping of the heart and great vessels by cardiovascular magnetic resonance, J. Cardiovasc. Magn. Reson. Off. J. Soc. Cardiovasc. Magn. Reson., Volume 13 (2011), 7 | DOI

[23] M. Markl; A. Frydrychowicz; S. Kozerke; M. Hope; O. Wieben 4D flow MRI, J. Magn. Reson. Imaging, Volume 36 (2012) no. 5, pp. 1015-1036 | DOI

[24] O. Amili; D. Schiavazzi; S. Moen; B. Jagadeesan; P.-F. V. de Moortele; F. Coletti Hemodynamics in a giant intracranial aneurysm characterized by in vitro 4D flow MRI, PLoS One, Volume 13 (2018) no. 1, e0188323 | DOI

[25] S. Meckel; L. Leitner; L. H. Bonati; F. Santini; T. Schubert; A. F. Stalder; P. Lyrer; M. Markl; S. G. Wetzel Intracranial artery velocity measurement using 4D PC MRI at 3 T: comparison with transcranial ultrasound techniques and 2D PC MRI, Neuroradiology, Volume 55 (2013) no. 4, pp. 389-398 | DOI

[26] A. Wåhlin; K. Ambarki; R. Birgander; O. Wieben; K. M. Johnson; J. Malm; A. Eklund Measuring pulsatile flow in cerebral arteries using 4D phase-contrast MR imaging, Am. J. Neuroradiol., Volume 34 (2013) no. 9, pp. 1740-1745 | DOI

[27] A. Harloff; F. Albrecht; J. Spreer; A. F. Stalder; J. Bock; A. Frydrychowicz; J. Schöllhorn; A. Hetzel; M. Schumacher; J. Hennig; M. Markl 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T, Magn. Reson. Med., Volume 61 (2009) no. 1, pp. 65-74 | DOI

[28] H. Pedersen; S. Kozerke; S. Ringgaard; K. Nehrke; W. Y. Kim k-t PCA: temporally constrained k-t BLAST reconstruction using principal component analysis, Magn. Reson. Med., Volume 62 (2009) no. 3, pp. 706-716 | DOI

[29] S. Kozerke; J. Tsao; R. Razavi; P. Boesiger Accelerating cardiac cine 3D imaging using k-t BLAST, Magn. Reson. Med., Volume 52 (2004) no. 1, pp. 19-26 | DOI

[30] G. Pagé; J. Bettoni; A.-V. Salsac; O. Balédent Influence of principal component analysis acceleration factor on velocity measurement in 2D and 4D PC-MRI, Magn. Reson. Mater. Phys. Biol. Med., Volume 31 (2018) no. 3, pp. 469-481 | DOI

[31] A. Goddi; C. Bortolotto; I. Fiorina; M. V. Raciti; M. Fanizza; E. Turpini; G. Boffelli; F. Calliada High-frame rate vector flow imaging of the carotid bifurcation, Insights Imaging, Volume 8 (2017) no. 3, pp. 319-328 | DOI

[32] E. R. Hurd; E. Iffrig; D. Jiang; J. N. Oshinski; L. H. Timmins Flow-based method demonstrates improved accuracy for calculating wall shear stress in arterial flows from 4D flow MRI data, J. Biomech., Volume 146 (2023), 111413 | DOI

[33] P. A. Yushkevich; J. Piven; H. C. Hazlett; R. G. Smith; S. Ho; J. C. Gee; G. Gerig User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability, NeuroImage, Volume 31 (2006) no. 3, pp. 1116-1128 | DOI

[34] V. Caselles; R. Kimmel; G. Sapiro Geodesic active contours, Int. J. Comput. Vis., Volume 22 (1997) no. 1, pp. 61-79 | DOI

[35] O. Balédent; M. C. Henry-Feugeas; I. Idy-Peretti Cerebrospinal fluid dynamics and relation with blood flow: a magnetic resonance study with semiautomated cerebrospinal fluid segmentation, Invest. Radiol., Volume 36 (2001) no. 7, pp. 368-377 | DOI

[36] C. Xu; J. L. Prince Snakes, shapes, and gradient vector flow, IEEE Trans. Image Process., Volume 7 (1998) no. 3, pp. 359-369 | DOI

[37] O. Baledent; C. Gondry-Jouet; M. E. Meyer; G. De Marco; D. Le Gars; M. C. Henry-Feugeas; I. Idy-Peretti Relationship between cerebrospinal fluid and blood dynamics in healthy volunteers and patients with communicating hydrocephalus, Invest. Radiol., Volume 39 (2004) no. 1, pp. 45-55 | DOI

[38] J. R. Womersley Oscillatory flow in arteries: the constrained elastic tube as a model of arterial flow and pulse transmission, Phys. Med. Biol., Volume 2 (1957) no. 2, 178 | DOI

[39] S. Ko; J. Lee; S. Song; D. Kim; S. H. Lee; J.-H. Cho Patient-specific hemodynamics of severe carotid artery stenosis before and after endarterectomy examined by 4D flow MRI, Sci. Rep., Volume 9 (2019) no. 1, 18554 | DOI

[40] M. Ziegler; J. Alfraeus; E. Good; J. Engvall; E. de Muinck; P. Dyverfeldt Exploring the relationships between hemodynamic stresses in the carotid arteries, Front. Cardiovasc. Med., Volume 7 (2020), 617755 | DOI

[41] F. Hölzle; B. Hohlweg-Majert; M. R. Kesting; T. Mücke; D. J. Loeffelbein; K. D. Wolff; A. Wysluch Reverse flow facial artery as recipient vessel for perforator flaps, Microsurgery, Volume 29 (2009) no. 6, pp. 437-442 | DOI

[42] M. Cibis; W. V. Potters; M. Selwaness; F. J. Gijsen; O. H. Franco; A. M. A. Lorza; M. de Bruijne; A. Hofman; A. van der Lugt; A. J. Nederveen; J. J. Wentzel Relation between wall shear stress and carotid artery wall thickening MRI versus CFD, J. Biomech., Volume 49 (2016) no. 5, pp. 735-741 | DOI

[43] I. E. Sanharawi; M. Barral; S. Lenck; J. G. Dillinger; D. Salvan; G. Mangin; A. Cogo; O. Bailliart; B. I. Levy; N. Kubis; A. Bisdorff-Bresson; P. Bonnin Wall shear stress in the feeding native conduit arteries of superficial arteriovenous malformations of the lower face is a reliable marker of disease progression, Ultraschall Med. - Eur. J. Ultrasound, Volume 41 (2020) no. 4, pp. 428-438 | DOI

[44] M. Ahmadpour-B; A. Nooraeen; M. Tafazzoli-Shadpour; H. Taghizadeh Contribution of atherosclerotic plaque location and severity to the near-wall hemodynamics of the carotid bifurcation: an experimental study and FSI modeling, Biomech. Model. Mechanobiol., Volume 20 (2021) no. 3, pp. 1069-1085 | DOI

[45] J. Faurie; M. Baudet; K. C. Assi; D. Auger; G. Gilbert; F. Tournoux; D. Garcia Intracardiac vortex dynamics by high-frame-rate Doppler vortography—in vivo comparison with vector flow mapping and 4-D flow MRI, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, Volume 64 (2017) no. 2, pp. 424-432 | DOI

[46] F. J. Contijoch; M. Horowitz; E. Masutani; S. Kligerman; A. Hsiao 4D flow vorticity visualization predicts regions of quantitative flow inconsistency for optimal blood flow measurement, Radiol. Cardiothorac. Imaging, Volume 2 (2020) no. 1, e190054 | DOI

[47] F. Zhang; C. Lanning; L. Mazzaro; A. J. Barker; P. E. Gates; W. D. Strain; J. Fulford; O. E. Gosling; A. C. Shore; N. G. Bellenger; B. Rech; J. Chen; J. Chen; R. Shandas In vitro and preliminary in vivo validation of echo particle image velocimetry in carotid vascular imaging, Ultrasound Med. Biol., Volume 37 (2011) no. 3, pp. 450-464 | DOI

[48] J. Jensen; C. A. Villagómez Hoyos; M. S. Traberg; J. B. Olesen; B. G. Tomov; R. Moshavegh; S. Holbek; M. B. Stuart; C. Ewertsen; K. L. Hansen; C. Thomsen; M. B. Nielsen; J. A. Jensen Accuracy and precision of a plane wave vector flow imaging method in the healthy carotid artery, Ultrasound Med. Biol., Volume 44 (2018) no. 8, pp. 1727-1741 | DOI

[49] M. M. Pedersen; M. J. Pihl; P. Haugaard; K. L. Hansen; T. Lange; L. Lönn; M. B. Nielsen; J. A. Jensen Novel flow quantification of the carotid bulb and the common carotid artery with vector flow ultrasound, Ultrasound Med. Biol., Volume 40 (2014) no. 11, pp. 2700-2706 | DOI

[50] E. A. Kuczynski; P. B. Vermeulen; F. Pezzella; R. S. Kerbel; A. R. Reynolds Vessel co-option in cancer, Nat. Rev. Clin. Oncol., Volume 16 (2019) no. 8, pp. 469-493 | DOI

[51] E. Latacz; E. Caspani; R. Barnhill; C. Lugassy; C. Verhoef; D. Grünhagen; P. B. Vermeulen Pathological features of vessel co-option versus sprouting angiogenesis, Angiogenesis, Volume 23 (2020) no. 1, pp. 43-54 | DOI

[52] O. Tan; M. Kantarci; D. Parmaksizoglu; U. Uyanik; I. Durur Determination of the recipient vessels in the head and neck using multislice spiral computed tomography angiography before free flap surgery: a preliminary study, J. Craniofac. Surg., Volume 18 (2007) no. 6, pp. 1284-1289 | DOI

[53] J. Bettoni; G. Pagé; A.-V. Salsac; J.-M. Constans; J. Duisit; C. Chivot; S. Testelin; B. Devauchelle; O. Balédent; S. Dakpé Contribution of flow MRI in the therapeutic management of middle face high flow arteriovenous malformation: a case report, J. Stomatol. Oral Maxillofac. Surg., Volume 120 (2019) no. 4, pp. 361-365 | DOI

[54] T. K. Truong; L. J. Wang; I. S. Reed; W. S. Hsieh Image data compression using cubic convolution spline interpolation, IEEE Trans. Image Process., Volume 9 (2000) no. 11, pp. 1988-1995 | DOI

[55] E. Enjilela; T. Y. Lee; G. Wisenberg; P. Teefy; R. Bagur; A. Islam; J. Hsieh; A. So Cubic-spline interpolation for sparse-view CT image reconstruction with filtered backprojection in dynamic myocardial perfusion imaging, Tomography, Volume 5 (2019) no. 3, pp. 300-307 | DOI

Cité par Sources :

Commentaires - Politique