[Écoulement sanguin et dysfonctionnement de lʼendothélium artériel : mécanismes et implications]
Lʼendothélium artériel régule finement la fonction vasculaire, et le dysfonctionnement de lʼendothélium joue un rôle essentiel dans le développement de lʼathérosclérose. Les lésions dʼathérosclérose se développent préférentiellement au niveau des branches et des bifurcations artérielles, là où le flux sanguin est perturbé. Comprendre la base de cette observation nécessite dʼélucider les effets de lʼécoulement sanguin sur la fonction des cellules endothéliales (CE). Le but de cette revue est : (1) de décrire notre compréhension actuelle de la relation entre lʼécoulement sanguin artériel et lʼathérosclérose, (2) de présenter le large éventail des réponses biologiques des CE induites par lʼécoulement, et (3) de discuter les mécanismes par lesquels les CE sentent, transmettent, et traduisent les forces mécaniques générées par lʼécoulement. Nous conclurons en présentant quelques perspectives dans le domaine hautement interdisciplinaire de la mécanotransduction des CE.
The arterial endothelium exquisitely regulates vascular function, and endothelial dysfunction plays a critical role in the development of atherosclerosis. Atherosclerotic lesions develop preferentially at arterial branches and bifurcations where the blood flow is disturbed. Understanding the basis for this observation requires elucidating the effects of blood flow on the endothelial cell (EC) function. The goal of this review is: (1) to describe our current understanding of the relationships between arterial blood flow and atherosclerosis, (2) to present the wide array of flow-induced biological responses in ECs, and (3) to discuss the mechanisms by which ECs sense, transmit, and transduce flow-derived mechanical forces. We conclude by presenting some future perspectives in the highly interdisciplinary field of EC mechanotransduction.
Mot clés : Cellules endothéliales, Athérosclérose, Mécanotransduction, Cytosquelettte, Écoulement sanguin, Mécanosenseurs
Abdul I. Barakat 1
@article{CRPHYS_2013__14_6_479_0, author = {Abdul I. Barakat}, title = {Blood flow and arterial endothelial dysfunction: {Mechanisms} and implications}, journal = {Comptes Rendus. Physique}, pages = {479--496}, publisher = {Elsevier}, volume = {14}, number = {6}, year = {2013}, doi = {10.1016/j.crhy.2013.05.003}, language = {en}, }
Abdul I. Barakat. Blood flow and arterial endothelial dysfunction: Mechanisms and implications. Comptes Rendus. Physique, Volume 14 (2013) no. 6, pp. 479-496. doi : 10.1016/j.crhy.2013.05.003. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2013.05.003/
[1] Modulation of human vascular endothelial cell behaviors by nanotopographic cues, Biomaterials, Volume 31 (2010), pp. 5418-5426
[2] Tissue cells feel and respond to the stiffness of their substrate, Science, Volume 310 (2005), pp. 1139-1143
[3] Flow-mediated endothelial mechanotransduction, Physiol. Rev., Volume 75 (1995), pp. 519-560
[4] Endothelial cellular response to altered shear stress, Am. J. Physiol., Volume 281 (2001), p. L529-L533
[5] Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell (review), Am. J. Physiol., Volume 292 (2007), p. H1209-H1224
[6] Mechanotransduction in vascular physiology and atherogenesis, Nat. Rev. Mol. Cell Biol., Volume 10 (2009), pp. 53-62
[7] Rapid signal transduction in living cells is a unique feature of mechanotransduction, Proc. Natl. Acad. Sci. USA, Volume 105 (2008), pp. 6626-6631
[8] Mechanotransduction across the cell surface and through the cytoskeleton, Science, Volume 260 (1993), pp. 1124-1127
[9] Demonstrations of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure, Proc. Natl. Acad. Sci. USA, Volume 94 (1997), pp. 849-854
[10] Mitochondrial displacements in response to nanomechanical forces, J. Mol. Recognit., Volume 21 (2008), pp. 30-36
[11] Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus, Nat. Rev. Mol. Cell Biol., Volume 10 (2009), pp. 75-82
[12] Effects of pulsatile flow on cultured vascular endothelial cell morphology, J. Biomech. Eng., Volume 113 (1991), pp. 123-131
[13] Calcium responses of endothelial cell monolayers subjected to pulsatile and steady laminar flow differ, Am. J. Physiol., Volume 269 (1995), p. C367-C375
[14] Oscillatory shear stress stimulates adhesion molecule expression in cultured human endothelium, Circ. Res., Volume 82 (1998), pp. 532-539
[15] Influence of different forms of shear stress on vascular endothelial TGF-1 mRNA expression, Int. J. Mol. Med., Volume 5 (2000), pp. 635-641
[16] Differential membrane potential and ion current responses to different types of shear stress in vascular endothelial cells, Am. J. Physiol., Volume 286 (2004), p. C1367-C1375
[17] Flow-activated chloride channels in vascular endothelium: shear stress sensitivity, desensitization dynamics, and physiological implications, J. Biol. Chem., Volume 281 (2006), pp. 36492-36500
[18] A flow-activated chloride-selective membrane current in vascular endothelial cells, Circ. Res., Volume 85 (1999), pp. 820-828
[19] Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy, Circ. Res., Volume 74 (1994), pp. 163-171
[20] Structure and function of basement membranes, Exp. Biol. Med., Volume 232 (2007), pp. 1121-1129
[21] Characterization of endothelial basement membrane nanotopography in rhesus macaque as a guide for vessel tissue engineering, Tissue Eng. Part A, Volume 15 (2009), pp. 2643-2651
[22] Non-muscle myosin II takes centre stage in cell adhesion and migration, Nat. Rev. Mol. Cell Biol., Volume 10 (2009), pp. 778-790
[23] Micropipette aspiration of cultured bovine aortic endothelial cells exposed to shear stress, Arterioscler. Thromb. Vasc. Biol., Volume 7 (1987), pp. 276-286
[24] Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress, J. Biomech., Volume 29 (1996), pp. 461-467
[25] Viscoelastic properties of the cell nucleus, Biochem. Biophys. Res. Commun., Volume 269 (2000), pp. 781-786
[26] Conserved microtubule–actin interactions in cell movement and morphogenesis, Nat. Cell Biol., Volume 5 (2003), pp. 599-609
[27] Cytoskeletal Mechanics: Models and Measurements (R.D. Kamm; M.R.K. Mofrad, eds.), Cambridge University Press, 2006, p. 13
[28] Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization and extracellular matrix mechanics, Biophys. J., Volume 90 (2006), pp. 3762-3773
[29] Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells, J. Biomech., Volume 39 (2006), pp. 2603-2610
[30] Mechanical properties of actin stress fibers in living cells, Biophys. J., Volume 95 (2008), pp. 6060-6071
[31] Isolation and contraction of the stress fiber, Mol. Biol. Cell, Volume 9 (1998), pp. 1919-1938
[32] Fluid flow mechanotransduction in vascular smooth muscle cells and fibroblasts, Ann. Biomed. Eng., Volume 39 (2011), pp. 1608-1619
[33] Modeling interstitial flow in an artery wall allows estimation of wall shear stress on smooth muscle cells, J. Biomech. Eng., Volume 117 (1995), pp. 358-363
[34] Role of endothelium in thrombosis and hemostasis, Annu. Rev. Med., Volume 47 (1996), pp. 315-331
[35] The endothelium: roles in thrombosis and hemostasis, Arch. Pathol. Lab. Med., Volume 101 (1977), pp. 61-64
[36] Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis, Physiol. Rev., Volume 84 (2004), pp. 869-901
[37] Crucial role of endothelium in the vasodilator response to increased flow in vivo, Hypertension, Volume 8 (1986), pp. 37-44
[38] Reductions in arterial diameter produced by chronic decreases in blood flow are endothelium-dependent, Science, Volume 231 (1986), pp. 405-407
[39] Pathogenesis of the atherosclerotic lesion: current concepts of cellular and biochemical events (T. Tulenko; R. Cox, eds.), Recent Advances in Arterial Diseases: Atherosclerosis, Hypertension, and Vasopasm, Alan R. Liss, Inc., New York, 1986, pp. 1-29
[40] The pathogenesis of atherosclerosis, N. Engl. J. Med., Volume 295 (1976), pp. 369-377
[41] The pathogenesis of atherosclerosis, N. Engl. J. Med., Volume 295 (1976), pp. 420-425
[42] Inflammation in atherosclerosis, Nature, Volume 420 (2002), pp. 868-874
[43] Anti-inflammatory mechanisms in the vascular wall, Circ. Res., Volume 88 (2001), pp. 877-887
[44] Observations on localization of arterial plaques, Circ. Res., Volume 11 (1962), pp. 63-73
[45] Flow patterns in stenotic blood vessel models, Biorheology, Volume 13 (1976), pp. 337-355
[46] Particle paths and stasis in unsteady flow through a bifurcation, J. Biomech., Volume 10 (1977), pp. 561-568
[47] Particle flow behavior in models of branching vessels. I. Vortices in 90° T-junctions, Biorheology, Volume 16 (1979), pp. 231-248
[48] Flow in a symmetrically branched tube simulating the aortic bifurcation: the effects of unevenly distributed flow, Ann. Biomed. Eng., Volume 8 (1980), pp. 159-173
[49] Steady flow in a model of the human carotid bifurcation: Part I – Flow visualization, J. Biomech., Volume 15 (1982), pp. 349-362
[50] Steady flow in a model of the human carotid bifurcation: Part II – Laser-Doppler measurements, J. Biomech., Volume 15 (1982), pp. 363-378
[51] Hemodynamic measurements in human arterial casts, and their correlation with histology and luminal area, J. Biomech. Eng., Volume 102 (1980), pp. 247-251
[52] Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries, Circ. Res., Volume 66 (1990), pp. 1045-1066
[53] Pulsatile flow visualization in the abdominal aorta under differing physiological conditions: implications for increased susceptibility to atherosclerosis, J. Biomech. Eng., Volume 114 (1992), pp. 391-397
[54] Pulsatile flow visualization in a model of the human abdominal aorta and aortic bifurcation, J. Biomech., Volume 25 (1992), pp. 935-944
[55] Flow patterns in dog aortic arch under a steady flow condition simulating mid-systole, Heart Ves., Volume 11 (1996), pp. 180-191
[56] Microcinematographic studies of the flow field in the excised rabbit aorta, Biorheology, Volume 34 (1997), pp. 195-221
[57] Flow in the thoracic aorta, Cardiovasc. Res., Volume 13 (1979), pp. 607-620
[58] Aortic velocity contours at abdominal branches in anesthetized dogs, J. Biomech., Volume 21 (1988), pp. 277-286
[59] Profiles of velocity in coronary arteries of dogs indicate lower shear rate along inner arterial curvature, Arteriosclerosis, Volume 9 (1989), pp. 167-175
[60] Wall shear stress as measured in vivo: consequences for the design of the arterial system, Med. Biol. Eng. Comput., Volume 46 (2008), pp. 499-507
[61] A numerical calculation of flow in a curved tube model of the left main coronary artery, J. Biomech., Volume 24 (1991), pp. 175-189
[62] Wall shear stress distribution in the human carotid siphon during pulsatile flow, J. Biomech., Volume 21 (1988), pp. 663-671
[63] Numerical simulation of steady flow in a model of the aortic bifurcation, J. Biomech. Eng., Volume 114 (1992), pp. 40-49
[64] Computational study of the effect of geometric and flow parameters on the steady flow field at the rabbit aorto-celiac bifurcation, Biorheology, Volume 35 (1998), pp. 415-435
[65] Unsteady and three-dimensional simulation of blood flow in the human aortic arch, J. Biomech. Eng., Volume 124 (2002), pp. 378-387
[66] Effect of reverse flow on the pattern of wall shear stress near arterial branches, J. R. Soc. Interface, Volume 8 (2011), pp. 1594-1603
[67] Blood flow in the rabbit aortic arch and descending thoracic aorta, J. R. Soc. Interface, Volume 8 (2011), pp. 1708-1719
[68] Haemodynamics in the mouse aortic arch computed from MRI-derived velocities at the aortic root, J. R. Soc. Interface, Volume 9 (2012), pp. 2834-2844
[69] Wall shear stress in a subject specific human aorta – influence of fluid–structure interaction, Int. J. Appl. Mech., Volume 4 (2011), pp. 759-778
[70] Computational modeling of vascular hemodynamics (S. De; F. Guilak; M.R.K. Mofrad, eds.), Computational Modeling in Biomechanics, Springer, 2010
[71] Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree, J. Appl. Physiol., Volume 107 (2009), pp. 500-505
[72] Hemodynamics and wall mechanics in human carotid bifurcation and its consequences for atherogenesis: investigation of inter-individual variation, Biomech. Model. Mechanobiol., Volume 3 (2004), pp. 17-32
[73] The Mechanics of the Circulation, Oxford University Press, 1978
[74] The Fluid Mechanics of Large Blood Vessels, Cambridge University Press, 1980
[75] Fully developed pulsatile flow in a curved pipe, J. Fluid Mech., Volume 195 (1988), pp. 23-55
[76] Periodic flows through curved tubes: the effect of the frequency parameter, J. Fluid Mech., Volume 210 (1990), pp. 353-370
[77] Flow dynamics in the human aorta, J. Biomech. Eng., Volume 115 (1993), pp. 611-616
[78] Pulsatile flow and atherosclerosis in the human carotid bifurcation: positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, Volume 5 (1985), pp. 293-302
[79] Blood flow in arteries, Annu. Rev. Fluid Mech., Volume 29 (1997), pp. 399-434
[80] Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step, Biorheology, Volume 42 (2005), pp. 493-509
[81] Shear dependence of effective cell volume as a determinant of blood viscosity, Science, Volume 168 (1970), pp. 977-978
[82] CFD analysis incorporating the influence of wall motion: application to intracranial aneurysms (R. Larsen; M. Nielsen; J. Sporring, eds.), MICCAI 2006, Lect. Notes Comput. Sci., vol. 4191, Springer-Verlag, Berlin/Heidelberg, 2006, pp. 438-445
[83] Compliant model of a coupled sequential coronary arterial bypass graft: effects of vessel wall elasticity and non-Newtonian rheology on blood flow regime and hemodynamic parameters distribution, Med. Eng. Phys., Volume 34 (2012), pp. 860-872
[84] Acute vascular endothelial changes associated with increased blood velocity gradients, Circ. Res., Volume 22 (1968), pp. 165-197
[85] Arterial wall shear and distribution of early atheroma in man, Nature, Volume 223 (1969), pp. 1159-1161
[86] Atheroma and arterial wall shear. Observation, correlation and proposal of a shear dependent mass transfer mechanism for atherogenesis, Proc. R. Soc. Lond. B, Volume 177 (1971), pp. 109-133
[87] Effect of aortic taper on patterns of blood flow and wall shear stress in rabbits: association with age, Atherosclerosis, Volume 223 (2012), pp. 114-121
[88] Contrasting patterns of spontaneous aortic disease in young and old rabbits, Arterioscler. Thromb. Vasc. Biol., Volume 18 (1998), pp. 300-308
[89] Vascular endothelium responds to fluid shear stress gradients, Arterioscler. Thromb., Volume 12 (1992), pp. 1254-1257
[90] Temporal gradients in shear, but not spatial gradients, stimulate ERK1/2 activation in human endothelial cells, Am. J. Physiol., Volume 289 (2005), p. H2350-H2355
[91] Can temporal fluctuation in spatial wall shear stress gradient initiate a cerebral aneurysm? A proposed novel hemodynamic index, the gradient oscillatory number (GON), J. Biomech., Volume 42 (2009), pp. 550-554
[92] Twenty-fold difference in hemodynamic wall shear stress between murine and human aortas, J. Biomech., Volume 40 (2007), pp. 1594-1598
[93] Biomechanical activation of vascular endothelium as a determinant of its functional phenotype, Proc. Natl. Acad. Sci. USA, Volume 98 (2001), pp. 4478-4485
[94] Role of integrins in cellular responses to mechanical stress and adhesion, Curr. Opin. Cell Biol., Volume 9 (1997), pp. 707-713
[95] Hemodynamic shear-stress activates a K+ current in vascular endothelial-cells, Nature, Volume 331 (1988), pp. 168-170
[96] Shear stress regulates the endothelial Kir2.1 ion channel, Proc. Natl. Acad. Sci. USA, Volume 99 (2002), pp. 7780-7785
[97] Visualizing the mechanical activation of Src, Nature, Volume 434 (2005), pp. 1040-1045
[98] Fluid flow rapidly activates G proteins in human endothelial cells: involvement of G proteins in mechanochemical signal transduction, Circ. Res., Volume 79 (1996), pp. 834-839
[99] Fluid shear stress increases membrane fluidity in endothelial cells: a study with DCVJ fluorescence, Am. J. Physiol., Volume 278 (2000), p. H1401-H1406
[100] Shear stress induces a time- and position-dependent increase in endothelial cell membrane fluidity, Am. J. Physiol., Volume 280 (2001), p. C962-C969
[101] Flow-dependent cytosolic acidification of vascular endothelial cells, Science, Volume 258 (1992), pp. 656-659
[102] Cytosolic alkalinization of vascular endothelial cells produced by an abrupt reduction in fluid shear stress, Circ. Res., Volume 82 (1998), pp. 803-809
[103] Endothelial cells cultured from human umbilical vein release ATP, substance P and acetylcholine in response to increased flow, Proc. Biol. Sci., Volume 241 (1990), pp. 245-248
[104] Shear stress-induced release of nitric oxide from endothelial cells grown on beads, Hypertension, Volume 17 (1991), pp. 187-193
[105] Hemodynamics and vascular endothelial biology, J. Cardiovasc. Pharmacol., Volume 21 (1993) no. Suppl. 1, p. S6-S10
[106] Fluid shear stress modulates cytosolic free calcium in vascular endothelial cells, Am. J. Physiol., Volume 262 (1992), p. C384-C390
[107] Flow-induced calcium transients in single endothelial cells: spatial and temporal analysis, Am. J. Physiol., Volume 262 (1992), p. C1411-C1417
[108] Fluid shear stress stimulates mitogen-activated protein kinase in endothelial cells, Circ. Res., Volume 77 (1995), pp. 869-878
[109] Fluid shear stress stimulates big mitogen-activated protein kinase 1 (BMK1) activity in endothelial cells. Dependence on tyrosine kinases and intracellular calcium, J. Biol. Chem., Volume 274 (1999), pp. 143-150
[110] Stimulation of transcription factors NF kappa B and AP1 in endothelial cells subjected to shear stress, Biochem. Biophys. Res. Commun., Volume 201 (1994), pp. 950-956
[111] Molecular aspects of signal transduction of shear stress in the endothelial cell, J. Hypertens., Volume 12 (1994), pp. 989-999
[112] The dynamic response of vascular endothelial cells to fluid shear stress, J. Biomech. Eng., Volume 103 (1981), pp. 177-185
[113] Vascular endothelial morphology as an indicator of the pattern of blood flow, J. Biomech. Eng., Volume 103 (1981), pp. 172-176
[114] Response of cultured endothelial cells to steady flow, Microvasc. Res., Volume 28 (1984), pp. 87-94
[115] Differential responsiveness of vascular endothelial cells to different types of fluid mechanical shear stress, Cell Biochem. Biophys., Volume 38 (2003), pp. 323-343
[116] Molecular basis of rheological modulation of endothelial functions: Importance of stress direction, Biorheology, Volume 43 (2006), pp. 95-116
[117] Shear stress-mediated changes in the expression of leukocyte adhesion receptors on human umbilical vein endothelial cells in vitro, Ann. Biomed. Eng., Volume 23 (1995), pp. 247-256
[118] Fluid shear stress induces endothelial transforming growth factor beta-1 transcription and production. Modulation by potassium channel blockade, J. Clin. Invest., Volume 95 (1995), pp. 1363-1369
[119] Wall shear modulation of cytokines in early vein grafts, J. Vasc. Surg., Volume 40 (2004), pp. 345-350
[120] Secrets of the code: do vascular endothelial cells use ion channels to decipher complex flow signals?, Biomaterials, Volume 27 (2006), pp. 671-678
[121] A mechanosensory complex that mediates the endothelial cell response to fluid shear stress, Nature, Volume 437 (2005), pp. 426-431
[122] Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition, Proc. Natl. Acad. Sci. USA, Volume 95 (1998), pp. 2515-2519
[123] Mechanotransduction and flow across the endothelial glycocalyx, Proc. Natl. Acad. Sci. USA, Volume 100 (2003), pp. 7988-7995
[124] Mechanotransduction and the glycocalyx, J. Intern. Med., Volume 259 (2006), pp. 339-350
[125] The structure and function of the endothelial glycocalyx layer, Annu. Rev. Biomed. Eng., Volume 9 (2007), pp. 121-167
[126] The role of endothelial glycocalyx components in mechanotransduction of fluid shear stress, Biochem. Biophys. Res. Commun., Volume 355 (2007), pp. 228-233
[127] Three-dimensional flow-induced dynamics of the endothelial surface glycocalyx layer, MIT, 2007 (Ph.D. dissertation)
[128] Long-distance propagation of forces in a cell, Biochem. Biophys. Res. Commun., Volume 328 (2005), pp. 1133-1138
[129] Intracellular stress tomography reveals stress focusing and structural anisotropy in cytoskeleton of living cells, Am. J. Physiol., Volume 285 (2003), p. C1082-C1090
[130] Dynamics of mechanical signal transmission through prestressed actin stress fibers, PLoS ONE, Volume 7 (2012), p. e35343
[131] Mechanisms of cytoskeleton-mediated mechanical signal transmission in cells, Commun. Integr. Biol., Volume 5 (2012), pp. 538-542
[132] Nesprins: a novel family of spectrin-repeat-containing proteins that localize to the nuclear membrane in multiple tissues, J. Cell Sci., Volume 114 (2001), pp. 4485-4498
[133] Role of ANC-1 in tethering nuclei to the actin cytoskeleton, Science, Volume 298 (2002), pp. 406-409
[134] NUANCE a giant protein connecting the nucleus and actin cytoskeleton, J. Cell Sci., Volume 115 (2002), pp. 3207-3222
[135] ANChors away: an actin based mechanism of nuclear positioning, J. Cell Sci., Volume 116 (2003), pp. 211-216
[136] Enaptin, a giant actin-binding protein, is an element of the nuclear membrane and the actin cytoskeleton, Exp. Cell Res., Volume 295 (2004), pp. 330-339
[137] Lamin A/C-dependent localization of nesprin-2, a giant scaffolder at the nuclear envelope, Mol. Biol. Cell, Volume 16 (2005), pp. 3411-3424
[138] Nesprin-3, a novel outer nuclear membrane protein, associates with the cytoskeletal linker protein plectin, J. Cell Biol., Volume 171 (2005), pp. 799-810
[139] The inner nuclear membrane protein Sun1 mediates the anchorage of nesprin-2 to the nuclear envelope, J. Cell Sci., Volume 118 (2005), pp. 3419-3430
[140] Syne proteins anchor muscle nuclei at the neuromuscular junction, Proc. Natl. Acad. Sci. USA, Volume 102 (2005), pp. 4359-4364
[141] Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization, Mol. Biol. Cell, Volume 22 (2011), pp. 4324-4334
[142] Internal and external biophysical regulation of endothelial cell morphology and function, University of California, Davis, 2011 (Ph.D. dissertation)
[143] Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation, Biophys. J., Volume 99 (2010), pp. 115-123
[144] Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis, Int. J. Biochem. Cell Biol., Volume 42 (2010), pp. 1717-1728
[145] The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton, J. Biol. Chem., Volume 286 (2011), pp. 26743-26753
[146] Dynamic molecular processes mediate cellular mechanotransduction, Nature, Volume 475 (2011), pp. 316-323
[147] Force-induced activation of Talin and its possible role in focal adhesion mechanotransduction, J. Biomech., Volume 40 (2007), pp. 2096-2106
[148] Stretching single talin rod molecules activates vinculin binding, Science, Volume 323 (2009), pp. 638-641
[149] Evidence for a role of platelet endothelial cell adhesion molecule-1 in endothelial cell mechanosignal transduction: is it a mechanoresponsive molecule?, J. Cell Biol., Volume 158 (2002), pp. 773-785
[150] Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement, J. Cell Biol., Volume 173 (2006), pp. 733-741
[151] Integration of basal topographic cues and apical shear stress in vascular endothelial cells, Biomaterials, Volume 33 (2012), pp. 4126-4135
[152] Platelet activating factor increases endothelial and nitric oxide production in individually perfused intact microvessels, Am. J. Physiol., Volume 288 (2005), p. H2869-H2877
[153] Endothelial and caveolin-1 antagonistically regulate eNOS activity and microvessel permeability in rat venules, Cardiovasc. Res., Volume 87 (2010), pp. 340-347
[154] The recovery time course of the endothelial cell glycocalyx in vivo and its implications in vitro, Circ. Res., Volume 104 (2009), pp. 1318-1325
[155] The biomechanics of arterial aneurysms, Annu. Rev. Fluid Mech., Volume 39 (2007), pp. 293-319
Cité par Sources :
Commentaires - Politique