Après avoir donné mes souvenirs personnels de ma collaboration au début des années 90 avec Yves Couder sur le sujet des filaments vortex dans la turbulence classique, je soutiens que les connaissances actuelles sur la turbulence quantique peuvent être utilisées pour éclairer le problème de l’explosion des filaments classiques.
After giving my personal recollections of my collaboration in the early 90’s with Yves Couder on the subject of vortex filaments in classical turbulence I argue that current insights in quantum turbulence can be used to shed some light on the problem of classical filaments blowup.
Mots clés : Turbulence, Superfuidité, Contre-Écoulement, Eclatement tourbillonaire, Reconnexion
Marc Brachet 1
@article{CRMECA_2020__348_6-7_501_0, author = {Marc Brachet}, title = {Vortex filaments and quantum turbulence}, journal = {Comptes Rendus. M\'ecanique}, pages = {501--508}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {6-7}, year = {2020}, doi = {10.5802/crmeca.41}, language = {en}, }
Marc Brachet. Vortex filaments and quantum turbulence. Comptes Rendus. Mécanique, Volume 348 (2020) no. 6-7, pp. 501-508. doi : 10.5802/crmeca.41. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.41/
[1] The local structure of turbulence in incompressible viscous fluid for very high Reynolds numbers, Dokl. Akad. Nauk SSSR, Volume 30 (1941), pp. 9-13
[2] Decay of isotropic turbulence in an incompressible viscous fluid, Dokl. Akad. Nauk SSSR, Volume 31 (1941), pp. 538-540
[3] Energy dissipation in locally isotropic turbulence, Dokl. Akad. Nauk SSSR, Volume 32 (1941), pp. 16-18 | Zbl
[4] Turbulence spectra from a tidal channel, J. Fluid Mech., Volume 12 (1962) no. 2, pp. 241-268 | DOI | Zbl
[5] Géométrie des structures à petite échelle dans le vortex de Taylor–Green, C. R. Acad. Sci. Paris II, Volume 311 (1990), p. 775 | Zbl
[6] Direct simulation of three-dimensional turbulence in the Taylor–Green vortex, Fluid Dyn. Res., Volume 8 (1991) no. 1–4, pp. 1-8 | DOI
[7] Mechanism of the production of small eddies from large ones, Proc. R. Soc. Lond. A, Volume 158 (1937), p. 499 | Zbl
[8] Intégration numérique des équations de Navier–Stokes en régime de turbulence développée, C. R. Acad. Sci. Paris, Volume 294 (1982), pp. 537-540 | MR | Zbl
[9] Small-scale structure of the Taylor–Green vortex, J. Fluid Mech., Volume 130 (1983), pp. 411-452 | DOI | Zbl
[10] Intermittent vortex structures in homogeneous isotropic turbulence, Nature, Volume 344 (1990) no. 6263, pp. 226-228 | DOI
[11] Direct observation of the intermittency of intense vorticity filaments in turbulence, Phys. Rev. Lett., Volume 67 (1991), p. 983 | DOI
[12] Characterization of the low-pressure filaments in a three-dimensional turbulent shear flow, Phys. Fluids, Volume 7 (1995) no. 3, pp. 630-646 | DOI
[13] Turbulence and waves in a rotating tank, J. Fluid Mech., Volume 125 (1982), pp. 505-534 | DOI
[14] Pressure fluctuations in swirling turbulent flows, J. Phys. II France, Volume 3 (1993) no. 3, pp. 271-278 | DOI
[15] Analysis of pressure fluctuations in swirling turbulent flows, J. Phys. II France, Volume 4 (1994) no. 5, pp. 725-733 | DOI
[16] A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic turbulence, Phys. Fluids, Volume 6 (1994) no. 6, pp. 2071-2083 | DOI | MR | Zbl
[17] Probability density functions, skewness, and flatness in large Reynolds number turbulence, Phys. Rev. E, Volume 53 (1996), pp. 1613-1621 | DOI
[18] Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium, Phys. Rev. Lett., Volume 98 (2007) (044502) | DOI
[19] Magnetic field reversals in an experimental turbulent dynamo, Europhys. Lett., Volume 77 (2007) no. 5 (59001) | DOI
[20] Superfluid high Reynolds von Kármán experiment, Rev. Sci. Instrum., Volume 85 (2014) no. 10 (103908) | DOI
[21] Turbulence, the Legacy of A. N. Kolmogorov, Cambridge University Press, Cambridge, 1995 | Zbl
[22] Experimental and numerical investigations of low-temperature superfluid turbulence, Eur. J. Mech. (B)/Fluids, Volume 17 (1998) no. 4, pp. 665-675 | DOI | Zbl
[23] Local investigation of superfluid turbulence, Europhys. Lett., Volume 43 (1998) no. 1, pp. 29-34 | DOI
[24] Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dyn. Res., Volume 33 (2003) no. 5–6, p. 509 | DOI | MR | Zbl
[25] Gross–Pitaevskii description of superfluid dynamics at finite temperature: a short review of recent results, C. R. Phys., Volume 13 (2012) no. 9, pp. 954-965 | DOI
[26] Modeling quantum fluid dynamics at nonzero temperatures, Proc. Natl Acad. Sci. USA, Volume 111 (2014), pp. 4675-4682 | DOI | MR | Zbl
[27] Numerical study of hydrodynamics using the nonlinear Schrödinger equation, Physica D, Volume 65 (1993), pp. 154-162 | DOI | Zbl
[28] Vortex breakdown: a review, Progr. Energy Combust. Sci., Volume 27 (2001) no. 4, pp. 431-481 | DOI
[29] Helicity, topology, and Kelvin waves in reconnecting quantum knots, Phys. Rev. A, Volume 94 (2016) (043605)
[30] Decaying Kolmogorov turbulence in a model of superflow, Phys. Fluids, Volume 9 (1997) no. 9, pp. 2644-2669 | DOI | MR | Zbl
[31] Kolmogorov turbulence in low-temperature superflows, Phys. Rev. Lett., Volume 78 (1997) no. 20, pp. 3896-3899 | DOI
[32] Interactive desktop analysis of high resolution simulations: application to turbulent plume dynamics and current sheet formation, New J. Phys., Volume 9 (2007), p. 301 | DOI
[33] Dual cascade and dissipation mechanisms in helical quantum turbulence, Phys. Rev. A, Volume 95 (2017) (053636)
[34] Reynolds number scaling of velocity increments in isotropic turbulence, Phys. Rev. E, Volume 95 (2017) (021101)
[35] Scaling exponents saturate in three-dimensional isotropic turbulence, Phys. Rev. Fluids, Volume 5 (2020) no. 5 (054605)
Cité par Sources :
Commentaires - Politique