[Description Gross–Pitaevskii de la dynamique des superfluides à température finite : Une revue courte des résultats récents]
Lʼéquation de Gross–Pitaevskii (GPE) décrit la dynamique des superfluides et les condensats de Bose–Einstein (BEC) à très basse température. Quand une troncature des modes de Fourier est effectuée, lʼéquation résultante tronquée (TGPE) peut également décrire le comportement thermique correct dʼun gaz de Bose, à condition que tous les modes concernés sont hautement occupés [M.J. Davis, S.A. Morgan, K. Burnett, Simulations of Bose fields at finite temperature, Phys. Rev. Lett. 87 (16) (2001) 160402]. Nous passons en revue quelques études numériques récentes faites par notre groupe, utilisant GPE et TGPE, de la dynamique des superfluides et de la stabilité des BEC. Les relations avec les expériences sont discutées.
The Gross–Pitaevskii equation (GPE) describes the dynamics of superflows and Bose–Einstein Condensates (BEC) at very low temperature. When a truncation of Fourier modes is performed, the resulting truncated GPE (TGPE) can also describe the correct thermal behavior of a Bose gas, as long as all relevant modes are highly occupied [M.J. Davis, S.A. Morgan, K. Burnett, Simulations of Bose fields at finite temperature, Phys. Rev. Lett. 87 (16) (2001) 160402]. We review some of our groupʼs recent GPE- and TGPE-based numerical studies of superfluid dynamics and BEC stability. The relations with experiments are discussed.
Mot clés : Turbulence, Superfuidité, Contre-écoulement
Marc Brachet 1
@article{CRPHYS_2012__13_9-10_954_0, author = {Marc Brachet}, title = {Gross{\textendash}Pitaevskii description of superfluid dynamics at finite temperature: {A} short review of recent results}, journal = {Comptes Rendus. Physique}, pages = {954--965}, publisher = {Elsevier}, volume = {13}, number = {9-10}, year = {2012}, doi = {10.1016/j.crhy.2012.10.006}, language = {en}, }
TY - JOUR AU - Marc Brachet TI - Gross–Pitaevskii description of superfluid dynamics at finite temperature: A short review of recent results JO - Comptes Rendus. Physique PY - 2012 SP - 954 EP - 965 VL - 13 IS - 9-10 PB - Elsevier DO - 10.1016/j.crhy.2012.10.006 LA - en ID - CRPHYS_2012__13_9-10_954_0 ER -
Marc Brachet. Gross–Pitaevskii description of superfluid dynamics at finite temperature: A short review of recent results. Comptes Rendus. Physique, Volume 13 (2012) no. 9-10, pp. 954-965. doi : 10.1016/j.crhy.2012.10.006. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2012.10.006/
[1] Gross–Pitaevskii dynamics of Bose–Einstein condensates and superfluid turbulence, Fluid Dyn. Res., Volume 33 (2003) no. 5–6, p. 509
[2] Boundary layers in Gross–Pitaevskii superflow around a disk, C. R. Physique, Volume 5 (2004) no. 1, pp. 3-8
[3] Boundary layers and emitted excitations in nonlinear Schrödinger superflow past a disk, Physica D, Volume 210 (2005) no. 3–4, pp. 203-226
[4] Radiation and vortex dynamics in the nonlinear Schrödinger equation, Phys. Rev. E, Volume 78 (2008), p. 026601
[5] Comment on “Superfluid turbulence from quantum Kelvin wave to classical Kolmogorov cascades”, Phys. Rev. Lett., Volume 105 (2010), p. 129401
[6] On some statistical properties of hydrodynamical and magneto-hydrodynamical fields, Quart. Appl. Math., Volume 10 (1952) no. 1, pp. 69-74
[7] On the statistical mechanics of an adiabatically compressible fluid, J. Acoust. Soc. Am., Volume 27 (1955) no. 3, pp. 438-441
[8] Helical turbulence and absolute equilibrium, J. Fluid Mech., Volume 59 (1973), pp. 745-752
[9] Statistical theory of turbulence, Les Houches, 1973 (1977)
[10] Effective dissipation and turbulence in spectrally truncated Euler flows, Phys. Rev. Lett., Volume 95 (2005) no. 26, p. 264502
[11] Two-fluid model of the truncated Euler equations, Physica D: Nonlinear Phenom., Volume 237 (2008) no. 14–17, pp. 2015-2019
[12] Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows, Phys. Rev. E ( May 2009 ), pp. 1-5
[13] Generation and characterization of absolute equilibrium of compressible flows, Int. J. Bifurc. Chaos, Volume 19 (2009) no. 10, pp. 3445-3459
[14] Finite-temperature models of Bose–Einstein condensation, J. Phys. B: At. Mol. Opt. Phys., Volume 41 (2008), p. 203002
[15] Simulations of Bose fields at finite temperature, Phys. Rev. Lett., Volume 87 (2001) no. 16, p. 160402
[16] Energy cascade with small-scale thermalization, counterflow metastability, and anomalous velocity of vortex rings in Fourier-truncated Gross–Pitaevskii equation, Phys. Rev. E, Volume 83 (2011), p. 066311
[17] Dispersive bottleneck delaying thermalization of turbulent Bose–Einstein condensates, Phys. Rev. Lett., Volume 106 (2011), p. 115303
[18] Anomalous vortex-ring velocities induced by thermally excited Kelvin waves and counterflow effects in superfluids, Phys. Rev. B, Volume 83 (2011), p. 132506
[19] Quantized Vortices in Helium II, Cambridge Univ. Press, Cambridge, 1991
[20] Structure of a quantized vortex in boson systems, Nuovo Cimento, Volume 20 (1961) no. 3
[21] Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, Volume 13 (1961) no. 2
[22] Fluid Mechanics, Pergamon Press, Oxford, 1980
[23] Observation of Bose–Einstein condensation in a dilute atomic vapor, Science, Volume 269 (1995), p. 198
[24] Bose–Einstein condensation in a gas of sodium atoms, Phys. Rev. Lett., Volume 75 (1995), p. 3969
[25] Bose–Einstein condensation of lithium: Observation of limited condensate number, Phys. Rev. Lett., Volume 78 (1997) no. 6, p. 985
[26] Theory of Bose–Einstein condensation in trapped gases, Rev. Mod. Phys., Volume 71 (1999) no. 3
[27] Model of superflow with rotons, Phys. Rev. Lett., Volume 71 (1993) no. 2, p. 247
[28] Scaling laws for vortical nucleation solutions in a model of superflow, Physica D, Volume 140 (2000), pp. 126-140
[29] Numerical Analysis of Spectral Methods, SIAM, Philadelphia, 1977
[30] Condensation of classical nonlinear waves, Phys. Rev. Lett., Volume 95 (2005) no. 26, p. 263901
[31] Breakdown of weak-turbulence and nonlinear wave condensation, Physica D, Volume 238 (2009) no. 16, pp. 1524-1549
[32] Dissipative dynamics of superfluid vortices at nonzero temperatures, Phys. Rev. Lett., Volume 99 (2007) no. 14
[33] D.J. Amit, Field Theory: The Renormalization Group and Critical Phenomena, World Scientific Publishing Company, 2005.
[34] Phase Transitions and Renormalisation Group, Oxford University Press, USA, 2007
[35] Kolmogorov turbulence in low-temperature superflows, Phys. Rev. Lett., Volume 78 (1997) no. 20, pp. 3896-3899
[36] Decaying Kolmogorov turbulence in a model of superflow, Phys. Fluids, Volume 9 (1997) no. 9, p. 2644
[37] Mesoscale equipartition of kinetic energy in quantum turbulence, EPL (Europhys. Lett.), Volume 94 (2011) no. 2, p. 24001
[38] The waves on the vortex ring in He II, J. Low Temp. Phys., Volume 126 (2002) no. 1–2, pp. 321-326
[39] Anomalous translational velocity of vortex ring with finite-amplitude Kelvin waves, Phys. Rev. E, Volume 74 (2006) no. 4, p. 046303
Cité par Sources :
Commentaires - Politique