Comptes Rendus
Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C
Comptes Rendus. Mécanique, Volume 348 (2020) no. 4, pp. 285-305.

In the present study, a novel quadrilateral element, namely SQ4C, combined with the Timoshenko beam element is proposed for the static and buckling analyses of stiffened plate/shell structures. The idea behind these elements is a treatment for shear locking as well as membrane locking arising from the framework of the first-order shear deformation theory and a mesh with curved shell geometry. Formulations with eccentricity are also presented in this paper for the general case. The static and buckling analysis solutions and comparison with other available numerical solutions are presented to illustrate the robustness of the proposed elements to stiffened plate/shell structures. This paper also helps engineers in supplementing their knowledge.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmeca.7
Mots clés : Static analysis, Buckling, Stiffened plate/shell, Strain smoothing technique, Shear locking, Membrane locking

Hoang Lan Ton-That 1, 2 ; Hieu Nguyen-Van 1 ; Thanh Chau-Dinh 2

1 Department of Civil Engineering, Ho Chi Minh City University of Architecture, 196 Pasteur Street, District 3, Ho Chi Minh City, Viet Nam
2 Department of Civil Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Thu Duc District, Ho Chi Minh City, Viet Nam
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2020__348_4_285_0,
     author = {Hoang Lan Ton-That and Hieu Nguyen-Van and Thanh Chau-Dinh},
     title = {Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element {SQ4C}},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {285--305},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {4},
     year = {2020},
     doi = {10.5802/crmeca.7},
     zbl = {07205475},
     language = {en},
}
TY  - JOUR
AU  - Hoang Lan Ton-That
AU  - Hieu Nguyen-Van
AU  - Thanh Chau-Dinh
TI  - Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 285
EP  - 305
VL  - 348
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.7
LA  - en
ID  - CRMECA_2020__348_4_285_0
ER  - 
%0 Journal Article
%A Hoang Lan Ton-That
%A Hieu Nguyen-Van
%A Thanh Chau-Dinh
%T Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C
%J Comptes Rendus. Mécanique
%D 2020
%P 285-305
%V 348
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmeca.7
%G en
%F CRMECA_2020__348_4_285_0
Hoang Lan Ton-That; Hieu Nguyen-Van; Thanh Chau-Dinh. Static and buckling analyses of stiffened plate/shell structures using the quadrilateral element SQ4C. Comptes Rendus. Mécanique, Volume 348 (2020) no. 4, pp. 285-305. doi : 10.5802/crmeca.7. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.7/

[1] M. Mukhopadhyay Stiffened plates in bending, Comput. Struct., Volume 50 (1994), pp. 541-548 | DOI | Zbl

[2] Y. Pan; L. A. Louca Experimental and numerical studies on the response of stiffened plates subjected to gas explosions, J. Constr. Steel Res., Volume 52 (1999), pp. 171-193 | DOI

[3] A. Samanta; M. Mukhopadhyay Finite element large deflection static analysis of shallow and deep stiffened shells, Finite Elem. Anal. Des., Volume 33 (1999), pp. 187-208 | DOI | Zbl

[4] A. E. Assan Analysis of multiple stiffened barrel shell structures by strain-based finite elements, Thin-Walled Struct., Volume 35 (1999), pp. 233-253 | DOI

[5] A. Rittweger; T. Schermann; H. G. Reimerdes; H. Öry Influence of geometric imperfections on the load capacity of orthotropic stiffened and composite shells of revolution with arbitrary meridians and boundary conditions, Thin-Walled Struct., Volume 23 (1995), pp. 237-254 | DOI

[6] R. Brian (“Nonlinear rigid-plastic analysis of stiffened plates under blast loads”, PhD thesis, University of British Columbia, 1991)

[7] C. Bisagni; R. Vescovini Analytical formulation for local buckling and post-buckling analysis of stiffened laminated panels, Thin-Walled Struct., Volume 47 (2009), pp. 318-334 | DOI

[8] B. H. S. Oliveira; E. L. Neto; F. A. C. Monteiro An accurate Ritz approach for analysis of cracked stiffened plates, Appl. Math. Modelling, Volume 73 (2019), pp. 598-614 | DOI | MR | Zbl

[9] V. Gulizzi; V. Oliveri; A. Milazzo Buckling and post-buckling analysis of cracked stiffened panels via an X-Ritz method, Aerosp. Sci. Technol., Volume 86 (2019), pp. 268-282 | DOI

[10] V. Oliveri; A. Milazzo A Rayleigh–Ritz approach for postbuckling analysis of variable angle tow composite stiffened panels, Comput. Struct., Volume 196 (2018), pp. 263-276 | DOI

[11] O. D. de Matos Junior; M. V. Donadon; S. G. P. Castro Aeroelastic behavior of stiffened composite laminated panel with embedded SMA wire using the hierarchical Rayleigh–Ritz method, Compos. Struct., Volume 181 (2017), pp. 26-45 | DOI

[12] L. X. Peng; K. M. Liew; S. Kitipornchai Buckling and free vibration analyses of stiffened plates using the FSDT mesh-free method, J. Sound Vib., Volume 289 (2006), pp. 421-449 | DOI | Zbl

[13] L. X. Peng; K. M. Liew; S. Kitipornchai Analysis of stiffened corrugated plates based on the FSDT via the mesh-free method, Int. J. Mech. Sci., Volume 49 (2007), pp. 364-378 | DOI | Zbl

[14] K. M. Liew; S. Kitipornchai; L. X. Peng 4 - Mesh-free methods for buckling analysis of stiffened and corrugated plates, Analysis and Design of Plated Structures (N. E. Shanmugam; C. M. Wang, eds.), Volume 2, Woodhead Publishing, 2006, pp. 80-116 | DOI

[15] M. P. Rossow; A. K. Ibrahimkhail Constraint method analysis of stiffened plates, Comput. Struct., Volume 8 (1978), pp. 51-60 | DOI | Zbl

[16] J. N. Kamineni; R. G. Burela Constraint method for laminated composite flat stiffened panel analysis using variational asymptotic method (VAM), Thin-Walled Struct., Volume 145 (2019), 106374 | DOI

[17] X. Q. Zhou; D. Y. Yu; X. Shao; S. Wang; Y. H. Tian Band gap characteristics of periodically stiffened-thin-plate based on center-finite-difference-method, Thin-Walled Struct., Volume 82 (2014), pp. 115-123 | DOI

[18] M. Mukhopadhyay Vibration and stability analysis of stiffened plates by semi-analytic finite difference method. Part I: Consideration of bending displacements only, J. Sound Vib., Volume 130 (1989), pp. 27-39 | DOI | Zbl

[19] A. S. Rajawat; A. K. Sharma; P. Gehlot Free vibration analysis of stiffened laminated plate using FEM, Materials Today: Proceedings, Volume 5 (2018), pp. 5313-5321

[20] P. Gehlot; A. K. Sharma; A. S. Rajawat Harmonic analysis of stiffened functionally graded plate using FEM, Materials Today: Proceedings, Volume 5 (2018), pp. 5145-5153

[21] L. Li; R. Xiaohui Stiffened plate bending analysis in terms of refined triangular laminated plate element, Compos. Struct., Volume 92 (2010), pp. 2936-2945 | DOI

[22] T. Nguyen-Thoi; T. Bui-Xuan; P. Phung-Van; H. Nguyen-Xuan; P. Ngo-Thanh Static, free vibration and buck- ling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements, Comput. Struct., Volume 125 (2013), pp. 100-113 | DOI

[23] R. K. Behera; S. S. Patro; N. Sharma; K. K. Joshi Eigen-frequency analysis of stiffened laminated composite plates using finite elements, Mater. Today: Proceedings, Volume 5 (2018), pp. 20152-20159

[24] M. S. Bouabdallah; J. L. Batoz Formulation and evaluation of a finite element model for the linear analysis of stiffened composite cylindrical panels, Finite Elem. Anal. Des., Volume 21 (1996), pp. 265-289 | DOI | Zbl

[25] Z. Zhang; H. Chen; L. Ye Progressive failure analysis for advanced grid stiffened composite plates/shells, Compos. Struct., Volume 86 (2008), pp. 45-54 | DOI

[26] Z. Ni; K. Zhou; X. Huang; H. Hua Free vibration of stiffened laminated shells of revolution with a free-form meridian and general boundary conditions, Int. J. Mech. Sci., Volume 157–158 (2019), pp. 561-573 | DOI

[27] G. G. Sheng; X. Wang The dynamic stability and nonlinear vibration analysis of stiffened functionally graded cylindrical shells, Appl. Math. Modelling, Volume 56 (2018), pp. 389-403 | DOI | MR | Zbl

[28] M. Omurtag; A. Y. Aköz “Mixed finite element formulation of eccentrically stiffened cylindrical shells”, 42 (1992)

[29] B. G. Prusty; S. K. Satsangi Analysis of stiffened shell for ships and ocean structures by finite element method, Ocean Eng., Volume 28 (2001), pp. 621-638 | DOI

[30] I. Katili; J.-L. Batoz; I. J. Maknun; A. Hamdouni; O. Millet The development of DKMQ plate bending element for thick to thin shell analysis based on the Naghdi/Reissner/Mindlin shell theory, Finite Elem. Anal. Des., Volume 100 (2015), pp. 12-27 | DOI | MR

[31] L. Leonetti; H. Nguyen-Xuan A mixed edge-based smoothed solid-shell finite element method (MES-FEM) for laminated shell structures, Compos. Struct., Volume 208 (2019), pp. 168-179 | DOI

[32] B. Liu; S. Lu; J. Ji; A. J. M. Ferreira; C. Liu; Y. Xing Three-dimensional thermo-mechanical solutions of cross-ply laminated plates and shells by a differential quadrature hierarchical finite element method, Compos. Struct., Volume 208 (2019), pp. 711-724 | DOI

[33] H. Nguyen-Van; N. Nguyen-Hoai; T. Chau-Dinh; T. Nguyen-Thoi Geometrically nonlinear analysis of composite plates and shells via a quadrilateral element with good coarse-mesh accuracy, Compos. Struct., Volume 112 (2014), pp. 327-338 | DOI

[34] T. Q. Bui; T. V. Do; L. H. T. Ton; D. H. Doan; S. Tanaka; D. T. Pham On the high temperature mechanical behaviors analysis of heated functionally graded plates using FEM and a new third-order shear deformation plate theory, Compos. Part B: Eng., Volume 92 (2016), pp. 218-241 | DOI

[35] L. T. That-Hoang; H. Nguyen-Van; T. Chau-Dinh; C. Huynh-Van Enhancement to four-node quadrilateral plate elements by using cell-based smoothed strains and higher-order shear deformation theory for nonlinear analysis of composite structures, J. Sandwich Struct. Mater., Volume 22 (2018) no. 7, pp. 2302-2329 | DOI

[36] H. L. Ton-That; H. Nguyen-Van; T. Chau-Dinh An improved four-node element for analysis of composite plate/shell structures based on twice interpolation strategy, Int. J. Comput. Methods, Volume 17 (2020) no. 6, 1950020 | MR | Zbl

[37] H. Nguyen-Van; H. L. Ton-That; T. Chau-Dinh; N. D. Dao Nonlinear Static Bending Analysis of Functionally Graded Plates Using MISQ24 Elements with Drilling Rotations, Proceedings of the International Conference on Advances in Computational Mechanics 2017 (2018), pp. 461-475 | DOI

[38] N. Nguyen-Thanh; K. Zhou; X. Zhuang; P. Areias; H. Nguyen-Xuan; Y. Bazilevs Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling, Comput. Methods Appl. Mech. Eng., Volume 316 (2017), pp. 1157-1178 | DOI | MR | Zbl

[39] J. h. Lim; D. Sohn; S. Im Variable-node element families for mesh connection and adaptive mesh computation, Struct. Eng. Mech., Volume 43 (2012), pp. 349-370 | DOI

[40] H. L. T. That; H. Nguyen-Van; T. Chau-Dinh Nonlinear bending analysis of functionally graded plates using SQ4T elements based on twice interpolation strategy, J. Appl. Comput. Mech., Volume 6 (2019) no. 1, pp. 125-136

[41] K.-J. Bathe; E. N. Dvorkin A formulation of general shell elements—the use of mixed interpolation of tensorial components, Int. J. Numer. Methods Eng., Volume 22 (1986), pp. 697-722 | DOI | Zbl

[42] K.-J. Bathe; E. N. Dvorkin A four-node plate bending element based on Mindlin/Reissner plate theory and a mixed interpolation, Int. J. Numer. Methods Eng., Volume 21 (1985), pp. 367-383 | DOI | Zbl

[43] E. N. Dvorkin; S. I. Vassolo A quadrilateral 2-D finite element based on mixed interpolation of tensorial components, Eng. Comput., Volume 6 (1989), pp. 217-224 | DOI

[44] Y. Ko; P.-S. Lee; K.-J. Bathe The MITC4+ shell element and its performance, Comput. Struct., Volume 169 (2016), pp. 57-68 | DOI

[45] Y. Ko; P.-S. Lee; K.-J. Bathe The MITC4+ shell element in geometric nonlinear analysis, Comput. Struct., Volume 185 (2017), pp. 1-14 | DOI

[46] Y. Ko; P.-S. Lee; K.-J. Bathe A new MITC4+ shell element, Comput. Struct., Volume 182 (2017), pp. 404-418 | DOI

[47] H. Farahani; R. Azarafza; F. Barati Mechanical buckling of a functionally graded cylindrical shell with axial and circumferential stiffeners using the third-order shear deformation theory, C. R. Méc., Volume 342 (2014), pp. 501-512 | DOI

[48] C. Chang-Koon; L. Tae-Yeol High performance variable-node element libraries for structural engineering applications, Computational Mechanics–New Frontiers for the New Millennium (S. Valliappan; N. Khalili, eds.), Elsevier, Oxford, 2001, pp. 187-194 | DOI

[49] L. Ton That Finite element analysis of functionally graded skew plates in thermal environment based on the new third-order shear deformation theory, J. Appl. Comput. Mech., Volume 6 (2019) no. 4, pp. 1044-1057

[50] A. Ibrahimbegovic; R. L. Taylor; E. L. Wilson A robust quadrilateral membrane finite element with drilling degrees of freedom, Int. J. Numer. Methods Eng., Volume 30 (1990), pp. 445-457 | DOI | Zbl

[51] S. Timoshenko; J. Gere Theory of Elastic Stability, McGraw-Hill Book Company, Inc., Toronto, 1961 (New York)

[52] W. Zhao Buckling analysis of stiffened plates with straight and curvilinear stiffener(s) (Virginia Tech2013)

[53] D. O. Brush; B. O. Almroth Buckling of Bars, Plates and Shells, McGraw-Hill, New York, 1975 | Zbl

Cité par Sources :

Commentaires - Politique