Durant les années 80, Yves Couder a introduit une nouvelle méthode d’enseignement à l’Université Paris Diderot à travers le module “PhyExp”. Au cours de projets expérimentaux, les étudiants découvraient des problèmes originaux de physique ainsi que les méthodes permettant d’y apporter des solutions. Ce module a été reproduit à l’Ecole Supérieure de Physique et Chimie Industrielles (ESPCI) depuis 2014. En forme d’hommage à l’approche d’Yves Couder, nous pésentons ici les résultats obtenus par un groupe d’étudiants dont le projet consistait à mesurer des temps de vie de fluorescence avec des moyens limités (un ventilateur et un spectromètre). En utilisant une méthode stroboscopique, nous avons pu obtenir des mesures quantitatives pour les raies visibles de l’Europium et du Terbium, deux éléments présents dans les tubes fluorescents. Nous avons également évalué la variation de ces temps de vie avec la température.
Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé :
Yves Couder created “PhyExp” at Paris Diderot University in 80s. This undergraduate course was meant to introduce experimental physics to students through projects. This approach proved fruitful both for students and teachers and has been replicated Ecole Supérieure de Physique et Chimie Industrielles (ESPCI). As a tribute to Yves, we report here the results obtained during this course about a specific project, namely the measurement of fluorescence lifetimes using stroboscopy and a fan. We obtain quantitative measurements for both Europium and Terbium that are commonly used in fluorescent tubes and we further study the variation of the lifetime with temperature.
Supplementary Materials:
Supplementary material for this article is supplied as a separate file:
Antonin Eddi 1, 2 ; Paul Baconnier 2 ; Matthieu Blons 2 ; Samuel Pautrel 2 ; Suzie Protière 3, 2 ; Emmanuel Fort 4, 5
@article{CRMECA_2020__348_6-7_439_0, author = {Antonin Eddi and Paul Baconnier and Matthieu Blons and Samuel Pautrel and Suzie Proti\`ere and Emmanuel Fort}, title = {Experimental teaching {\textemdash} {A} tribute to {Yves} {Couder} by the example: stroboscopy and fluorescence lifetime with a fan}, journal = {Comptes Rendus. M\'ecanique}, pages = {439--445}, publisher = {Acad\'emie des sciences, Paris}, volume = {348}, number = {6-7}, year = {2020}, doi = {10.5802/crmeca.39}, language = {en}, }
TY - JOUR AU - Antonin Eddi AU - Paul Baconnier AU - Matthieu Blons AU - Samuel Pautrel AU - Suzie Protière AU - Emmanuel Fort TI - Experimental teaching — A tribute to Yves Couder by the example: stroboscopy and fluorescence lifetime with a fan JO - Comptes Rendus. Mécanique PY - 2020 SP - 439 EP - 445 VL - 348 IS - 6-7 PB - Académie des sciences, Paris DO - 10.5802/crmeca.39 LA - en ID - CRMECA_2020__348_6-7_439_0 ER -
%0 Journal Article %A Antonin Eddi %A Paul Baconnier %A Matthieu Blons %A Samuel Pautrel %A Suzie Protière %A Emmanuel Fort %T Experimental teaching — A tribute to Yves Couder by the example: stroboscopy and fluorescence lifetime with a fan %J Comptes Rendus. Mécanique %D 2020 %P 439-445 %V 348 %N 6-7 %I Académie des sciences, Paris %R 10.5802/crmeca.39 %G en %F CRMECA_2020__348_6-7_439_0
Antonin Eddi; Paul Baconnier; Matthieu Blons; Samuel Pautrel; Suzie Protière; Emmanuel Fort. Experimental teaching — A tribute to Yves Couder by the example: stroboscopy and fluorescence lifetime with a fan. Comptes Rendus. Mécanique, Tribute to an exemplary man: Yves Couder, Volume 348 (2020) no. 6-7, pp. 439-445. doi : 10.5802/crmeca.39. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.39/
[1] Walking droplets, a form of wave-particle duality at macroscopic scale?, Europhys. News, Volume 41 (2010) no. 1, pp. 14-18 | DOI
[2] Walking and orbiting droplets, Nature, Volume 437 (2005) no. 7056, p. 208 | DOI
[3] From bouncing to floating: Noncoalescence of drops on a fluid bath, Phys. Rev. Lett., Volume 94 (2005) no. 17 (177801)
[4] Particle-wave association on a fluid interface, J. Fluid Mech., Volume 554 (2006), p. 85 | DOI | MR | Zbl
[5] Exotic orbits of two interacting wave sources, Phys. Rev. E, Volume 78 (2008) no. 3 (036204) | DOI
[6] Archimedean lattices in the bound states of wave interacting particles, Europhys. Lett., Volume 87 (2009) no. 5 (56002) | DOI
[7] Wave propelled ratchets and drifting rafts, Europhys. Lett., Volume 82 (2008) no. 4 (44001)
[8] Oscillating instability in bouncing droplet crystals, Europhys. Lett., Volume 94 (2011) no. 2 (20004) | DOI
[9] Level splitting at macroscopic scale, Phys. Rev. Lett., Volume 108 (2012) no. 26 (264503) | DOI
[10] Unpredictable tunneling of a classical wave-particle association, Phys. Rev. Lett., Volume 102 (2009) no. 24 (240401) | DOI
[11] Information stored in faraday waves: the origin of a path memory, J. Fluid Mech., Volume 674 (2011), p. 433 | DOI | MR | Zbl
[12] Path-memory induced quantization of classical orbits, Proc. Natl Acad. Sci. USA, Volume 107 (2010) no. 41, pp. 17515-17520 | DOI
[13] Single-particle diffraction and interference at a macroscopic scale, Phys. Rev. Lett., Volume 97 (2006) no. 15 (154101)
[14] Probabilities and trajectories in a classical wave-particle duality, J. Phys.: Conf. Ser., Volume 361 (2012) (012001)
[15] Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction, Phys. Rev. E, Volume 94 (2016) no. 4 (042224)
[16] Build-up of macroscopic eigenstates in a memory-based constrained system, New J. Phys., Volume 16 (2014) no. 11 (113027)
[17] Chaos driven by interfering memory, Phys. Rev. Lett., Volume 113 (2014) no. 10 (104101)
[18] Self-organization into quantized eigenstates of a classical wave-driven particle, Nat. Commun., Volume 5 (2014) no. 1, pp. 1-8
[19] Wave-based turing machine: Time reversal and information erasing, Phys. Rev. Lett., Volume 117 (2016) no. 9 (094502) | MR
[20] Multistable free states of an active particle from a coherent memory dynamics, Phys. Rev. Lett., Volume 122 (2019) no. 10 (104303)
[21] Tunable bimodal explorations of space from memory-driven deterministic dynamics, Phys. Rev. E, Volume 100 (2019) no. 3 (032201)
[22] The self-organization of capillary wave sources, J. Phys.: Condens. Matter, Volume 17 (2005) no. 45 (S3529)
[23] Trajectory eigenmodes of an orbiting wave source, Europhys. Lett., Volume 102 (2013) no. 1, p. 16005 | DOI
[24] Orbital motion of bouncing drops, Phys. Fluids, Volume 18 (2006) no. 9 (091114) | DOI
[25] Basic Electrical Engineering, Tata McGraw Hill, 2012
[26] Revolution in Lamps: a Chronicle of 50 years of Progress, The Fairmont Press, Inc., 2001
[27] Color Theory and its Application in Art and Design, Vol. 19, Springer, 2013
[28] Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications, J. Biomed. Opt., Volume 25 (2020) no. 7 (071203)
[29] Ein fluorometer. Apparat zur messung von fluoreszenzabklingungszeiten, Z. Phys., Volume 42 (1927) no. 11-12, pp. 853-861 | DOI
[30] Microscope phase fluorometer for determining the fluorescence lifetimes of fluorochromes, Rev. Sci. Instrum., Volume 30 (1959) no. 6, pp. 450-457 | DOI
[31] Frequency-domain lifetime measurements, Principles of Fluorescence Spectroscopy, Springer, 1999, pp. 141-184 | DOI
[32] Biological deep temperature imaging with fluorescence lifetime of rare-earth-doped ceramics particles in the second NIR biological window, Sci. Rep., Volume 9 (2019) no. 1, pp. 1-8
[33] Investigation of strain and temperature dependence of fluorescence lifetime of rare-earth doped fibers, International Conference on Smart Materials and Nanotechnology in Engineering, Volume 6423, International Society for Optics and Photonics, 2007 | DOI
[34] Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nat. Commun., Volume 3 (2012) no. 1, pp. 1-9
[35] et al. Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity, J. Mater. Chem. B, Volume 6 (2018) no. 36, pp. 5708-5717 | DOI
[36] https://en.wikipedia.org/wiki/Fluorescent_lamp (Fluorescent lamp)
[37] Electro-optic imaging enables efficient wide-field fluorescence lifetime microscopy, Nat. Commun., Volume 10 (2019) no. 1, pp. 1-8
Cité par Sources :
Commentaires - Politique