logo CRAS
Comptes Rendus. Mécanique

Teaching, arts
Experimental teaching — A tribute to Yves Couder by the example: stroboscopy and fluorescence lifetime with a fan
Comptes Rendus. Mécanique, Tome 348 (2020) no. 6-7, pp. 439-445.

Article du numéro thématique : Tribute to an exemplary man: Yves Couder

Durant les années 80, Yves Couder a introduit une nouvelle méthode d’enseignement à l’Université Paris Diderot à travers le module “PhyExp”. Au cours de projets expérimentaux, les étudiants découvraient des problèmes originaux de physique ainsi que les méthodes permettant d’y apporter des solutions. Ce module a été reproduit à l’Ecole Supérieure de Physique et Chimie Industrielles (ESPCI) depuis 2014. En forme d’hommage à l’approche d’Yves Couder, nous pésentons ici les résultats obtenus par un groupe d’étudiants dont le projet consistait à mesurer des temps de vie de fluorescence avec des moyens limités (un ventilateur et un spectromètre). En utilisant une méthode stroboscopique, nous avons pu obtenir des mesures quantitatives pour les raies visibles de l’Europium et du Terbium, deux éléments présents dans les tubes fluorescents. Nous avons également évalué la variation de ces temps de vie avec la température.

Compléments :
Des compléments sont fournis pour cet article dans le fichier séparé : crmeca-39-suppl.zip

Yves Couder created “PhyExp” at Paris Diderot University in 80s. This undergraduate course was meant to introduce experimental physics to students through projects. This approach proved fruitful both for students and teachers and has been replicated Ecole Supérieure de Physique et Chimie Industrielles (ESPCI). As a tribute to Yves, we report here the results obtained during this course about a specific project, namely the measurement of fluorescence lifetimes using stroboscopy and a fan. We obtain quantitative measurements for both Europium and Terbium that are commonly used in fluorescent tubes and we further study the variation of the lifetime with temperature.

Supplementary Materials:
Supplementary material for this article is supplied as a separate file: crmeca-39-suppl.zip

Publié le : 2020-11-16
DOI : https://doi.org/10.5802/crmeca.39
Mots clés: Teaching, Physics, Experimental approach, Observations, Fluoeresence lifetime
@article{CRMECA_2020__348_6-7_439_0,
     author = {Antonin Eddi and Paul Baconnier and Matthieu Blons and Samuel Pautrel and Suzie Proti\`ere and Emmanuel Fort},
     title = {Experimental teaching --- A tribute to Yves Couder by the example: stroboscopy and fluorescence lifetime with a fan},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {439--445},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {6-7},
     year = {2020},
     doi = {10.5802/crmeca.39},
     language = {en},
     url = {comptes-rendus.academie-sciences.fr/mecanique/item/CRMECA_2020__348_6-7_439_0/}
}
Antonin Eddi; Paul Baconnier; Matthieu Blons; Samuel Pautrel; Suzie Protière; Emmanuel Fort. Experimental teaching — A tribute to Yves Couder by the example: stroboscopy and fluorescence lifetime with a fan. Comptes Rendus. Mécanique, Tome 348 (2020) no. 6-7, pp. 439-445. doi : 10.5802/crmeca.39. https://comptes-rendus.academie-sciences.fr/mecanique/item/CRMECA_2020__348_6-7_439_0/

[1] Y. Couder; A. Boudaoud; S. Protière; E. Fort Walking droplets, a form of wave-particle duality at macroscopic scale?, Europhys. News, Volume 41 (2010) no. 1, pp. 14-18 | Article

[2] Yves Couder; Suzie Protiere; Emmanuel Fort; Arezki Boudaoud Walking and orbiting droplets, Nature, Volume 437 (2005) no. 7056, p. 208 | Article

[3] Yves Couder; E. Fort; C.-H. Gautier; A. Boudaoud From bouncing to floating: Noncoalescence of drops on a fluid bath, Phys. Rev. Lett., Volume 94 (2005) no. 17 (177801)

[4] Suzie Protiere; Arezki Boudaoud; Yves Couder Particle-wave association on a fluid interface, J. Fluid Mech., Volume 554 (2006), p. 85 | Article | MR 2261760 | Zbl 1156.76332

[5] S. Protière; S. Bohn; Y. Couder Exotic orbits of two interacting wave sources, Phys. Rev. E, Volume 78 (2008) no. 3 (036204) | Article

[6] A. Eddi; A. Decelle; E. Fort; Y. Couder Archimedean lattices in the bound states of wave interacting particles, Europhys. Lett., Volume 87 (2009) no. 5 (56002) | Article

[7] Antonin Eddi; Denis Terwagne; Emmanuel Fort; Yves Couder Wave propelled ratchets and drifting rafts, Europhys. Lett., Volume 82 (2008) no. 4 (44001)

[8] A. Eddi; Arezki Boudaoud; Y. Couder Oscillating instability in bouncing droplet crystals, Europhys. Lett., Volume 94 (2011) no. 2 (20004) | Article

[9] A. Eddi; J. Moukhtar; S. Perrard; E. Fort; Y. Couder Level splitting at macroscopic scale, Phys. Rev. Lett., Volume 108 (2012) no. 26 (264503) | Article

[10] A. Eddi; Emmanuel Fort; F. Moisy; Yves Couder Unpredictable tunneling of a classical wave-particle association, Phys. Rev. Lett., Volume 102 (2009) no. 24 (240401) | Article

[11] Antonin Eddi; Eric Sultan; Julien Moukhtar; Emmanuel Fort; Maurice Rossi; Yves Couder Information stored in faraday waves: the origin of a path memory, J. Fluid Mech., Volume 674 (2011), p. 433 | Article | MR 2801076 | Zbl 1241.76017

[12] Emmanuel Fort; Antonin Eddi; Arezki Boudaoud; Julien Moukhtar; Yves Couder Path-memory induced quantization of classical orbits, Proc. Natl Acad. Sci. USA, Volume 107 (2010) no. 41, pp. 17515-17520 | Article

[13] Yves Couder; Emmanuel Fort Single-particle diffraction and interference at a macroscopic scale, Phys. Rev. Lett., Volume 97 (2006) no. 15 (154101)

[14] Y. Couder; E. Fort Probabilities and trajectories in a classical wave-particle duality, J. Phys.: Conf. Ser., Volume 361 (2012) (012001)

[15] Matthieu Labousse; Stéphane Perrard; Yves Couder; Emmanuel Fort Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction, Phys. Rev. E, Volume 94 (2016) no. 4 (042224)

[16] Matthieu Labousse; Stéphane Perrard; Yves Couder; Emmanuel Fort Build-up of macroscopic eigenstates in a memory-based constrained system, New J. Phys., Volume 16 (2014) no. 11 (113027)

[17] Stéphane Perrard; Matthieu Labousse; Emmanuel Fort; Yves Couder Chaos driven by interfering memory, Phys. Rev. Lett., Volume 113 (2014) no. 10 (104101)

[18] Stéphane Perrard; Matthieu Labousse; Marc Miskin; Emmanuel Fort; Yves Couder Self-organization into quantized eigenstates of a classical wave-driven particle, Nat. Commun., Volume 5 (2014) no. 1, pp. 1-8

[19] Stéphane Perrard; Emmanuel Fort; Yves Couder Wave-based turing machine: Time reversal and information erasing, Phys. Rev. Lett., Volume 117 (2016) no. 9 (094502) | MR 3632142

[20] Vincent Bacot; Stéphane Perrard; Matthieu Labousse; Yves Couder; Emmanuel Fort Multistable free states of an active particle from a coherent memory dynamics, Phys. Rev. Lett., Volume 122 (2019) no. 10 (104303)

[21] Maxime Hubert; Stéphane Perrard; Matthieu Labousse; Nicolas Vandewalle; Yves Couder Tunable bimodal explorations of space from memory-driven deterministic dynamics, Phys. Rev. E, Volume 100 (2019) no. 3 (032201)

[22] Suzie Protiere; Yves Couder; Emmanuel Fort; Arezki Boudaoud The self-organization of capillary wave sources, J. Phys.: Condens. Matter, Volume 17 (2005) no. 45 (S3529)

[23] Emmanuel Fort; Yves Couder Trajectory eigenmodes of an orbiting wave source, Europhys. Lett., Volume 102 (2013) no. 1, p. 16005 | Article

[24] S. Protière; Y. Couder Orbital motion of bouncing drops, Phys. Fluids, Volume 18 (2006) no. 9 (091114) | Article

[25] D.C. Kulshreshtha Basic Electrical Engineering, Tata McGraw Hill, 2012

[26] Raymond Kane; Heinz Sell Revolution in Lamps: a Chronicle of 50 years of Progress, The Fairmont Press, Inc., 2001

[27] George A. Agoston Color Theory and its Application in Art and Design, Vol. 19, Springer, 2013

[28] Rupsa Datta; Tiffany M. Heaster; Joe T. Sharick; Amani A. Gillette; Melissa C. Skala Fluorescence lifetime imaging microscopy: fundamentals and advances in instrumentation, analysis, and applications, J. Biomed. Opt., Volume 25 (2020) no. 7 (071203)

[29] E. Gaviola Ein fluorometer. Apparat zur messung von fluoreszenzabklingungszeiten, Z. Phys., Volume 42 (1927) no. 11-12, pp. 853-861 | Article

[30] Benjamin D. Venetta Microscope phase fluorometer for determining the fluorescence lifetimes of fluorochromes, Rev. Sci. Instrum., Volume 30 (1959) no. 6, pp. 450-457 | Article

[31] Joseph R. Lakowicz Frequency-domain lifetime measurements, Principles of Fluorescence Spectroscopy, Springer, 1999, pp. 141-184 | Article

[32] Takumi Chihara; Masakazu Umezawa; Keiji Miyata; Shota Sekiyama; Naoki Hosokawa; Kyohei Okubo; Masao Kamimura; Kohei Soga Biological deep temperature imaging with fluorescence lifetime of rare-earth-doped ceramics particles in the second NIR biological window, Sci. Rep., Volume 9 (2019) no. 1, pp. 1-8

[33] Haili Jiang; Weimin Sun; Cong Zhang Investigation of strain and temperature dependence of fluorescence lifetime of rare-earth doped fibers, International Conference on Smart Materials and Nanotechnology in Engineering, Volume 6423, International Society for Optics and Photonics, 2007 | Article

[34] Kohki Okabe; Noriko Inada; Chie Gota; Yoshie Harada; Takashi Funatsu; Seiichi Uchiyama Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy, Nat. Commun., Volume 3 (2012) no. 1, pp. 1-9

[35] Hao Li; Mengling Zhang; Yuxiang Song; Huibo Wang; Yijun Fu; Hui Huang; Yang Liu; Zhenhui Kang Multifunctional carbon dot for lifetime thermal sensing, nucleolus imaging and antialgal activity, J. Mater. Chem. B, Volume 6 (2018) no. 36, pp. 5708-5717 | Article

[36] Wikipedia https://en.wikipedia.org/wiki/Fluorescent_lamp (Fluorescent lamp)

[37] Adam J. Bowman; Brannon B. Klopfer; Thomas Juffmann; Mark A. Kasevich Electro-optic imaging enables efficient wide-field fluorescence lifetime microscopy, Nat. Commun., Volume 10 (2019) no. 1, pp. 1-8