Comptes Rendus
Note
A modified FFT-based solver for the mechanical simulation of heterogeneous materials with Dirichlet boundary conditions
Comptes Rendus. Mécanique, Volume 348 (2020) no. 8-9, pp. 693-704.

Fast Fourier transform based algorithms, relying on the initial idea proposed by Moulinec and Suquet in 1998, are very efficient in the context of periodic homogenization in solid mechanics. The purpose of this short note is to propose a simple modification of these algorithms to extend their application domain from periodic boundary conditions (BC) to Dirichlet BC. The method is validated by a direct comparison with standard finite element simulations with prescribed displacements at the boundary. The convergence properties of the iterative algorithm are then analyzed using a simple example (2D matrix–inclusion) as a function of various parameters (material and algorithm parameters).

Reçu le :
Accepté le :
Première publication :
Publié le :
DOI : 10.5802/crmeca.54
Mots clés : FFT-based methods, Dirichlet boundary conditions, Heterogeneous materials, Homogenization in solid mechanics
Lionel Gélébart 1

1 CEA Paris-Saclay—Université Paris-Saclay, DES/ISAS/DMN/SRMA, 91191, GIF/YVETTE, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMECA_2020__348_8-9_693_0,
     author = {Lionel G\'el\'ebart},
     title = {A modified {FFT-based} solver for the mechanical simulation of heterogeneous materials with {Dirichlet} boundary conditions},
     journal = {Comptes Rendus. M\'ecanique},
     pages = {693--704},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {348},
     number = {8-9},
     year = {2020},
     doi = {10.5802/crmeca.54},
     language = {en},
}
TY  - JOUR
AU  - Lionel Gélébart
TI  - A modified FFT-based solver for the mechanical simulation of heterogeneous materials with Dirichlet boundary conditions
JO  - Comptes Rendus. Mécanique
PY  - 2020
SP  - 693
EP  - 704
VL  - 348
IS  - 8-9
PB  - Académie des sciences, Paris
DO  - 10.5802/crmeca.54
LA  - en
ID  - CRMECA_2020__348_8-9_693_0
ER  - 
%0 Journal Article
%A Lionel Gélébart
%T A modified FFT-based solver for the mechanical simulation of heterogeneous materials with Dirichlet boundary conditions
%J Comptes Rendus. Mécanique
%D 2020
%P 693-704
%V 348
%N 8-9
%I Académie des sciences, Paris
%R 10.5802/crmeca.54
%G en
%F CRMECA_2020__348_8-9_693_0
Lionel Gélébart. A modified FFT-based solver for the mechanical simulation of heterogeneous materials with Dirichlet boundary conditions. Comptes Rendus. Mécanique, Volume 348 (2020) no. 8-9, pp. 693-704. doi : 10.5802/crmeca.54. https://comptes-rendus.academie-sciences.fr/mecanique/articles/10.5802/crmeca.54/

[1] H. Moulinec; P. Suquet A numerical method for computing the overall response of nonlinear composites with complex microstructure, Comput. Methods Appl. Mech. Eng., Volume 157 (1998) no. 1–2, pp. 69-94 | DOI | MR | Zbl

[2] P. Eisenlohr; M. Diehl; R. A. Lebensohn; F. Roters A spectral method solution to crystal elasto-viscoplasticity at finite strains, Int. J. Plast., Volume 46 (2013), pp. 37-53 | DOI

[3] (Amitex_fftp, http://www.maisondelasimulation.fr/projects/amitex/general/_build/html/index.html)

[4] C. Huet Application of variational concepts to size effects in elastic heterogeneous bodies, J. Mech. Phys. Solids, Volume 38 (1990) no. 6, pp. 813-841 | DOI | MR

[5] T. Kanit; S. Forest; I. Galliet; V. Mounoury; D. Jeulin Determination of the size of the representative volume element for random composites: statistical and numerical approach, Int. J. Solids Struct., Volume 40 (2003) no. 13–14, pp. 3647-3679 | DOI | Zbl

[6] C. Chateau; L. Gélébart; M. Bornert; J. Crépin Micromechanical modeling of the elastic behavior of unidirectional cvi sic/sic composites, Int. J. Solids Struct., Volume 58 (2015), pp. 322-334 | DOI

[7] E. Heripre; M. Dexet; J. Crepin; L. Gélébart; A. Roos; M. Bornert; D. Caldemaison Coupling between experimental measurements and polycrystal finite element calculations for micromechanical study of metallic materials, Int. J. Plast., Volume 23 (2007) no. 9, pp. 1512-1539 | DOI | Zbl

[8] T. T. Nguyen; J. Yvonnet; M. Bornert; C. Chateau Modeling of complex microcracking in quasi-brittle materials: Numerical methods and experimental validations, Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics (F. Nicot; O. Millet, eds.), Elsevier, 2018, pp. 171-204 | DOI

[9] V. Rutka; A. Wiegmann; H. Andrä Ejiim for calculation of effective elastic moduli in 3d linear elasticity. Technical Report Berichte des Fraunhofer ITWM, Nr. 93 (2006), Fraunhofer ITWM (2006)

[10] D. G. Anderson Iterative procedures for nonlinear integral equations, J. ACM (JACM), Volume 12 (1965) no. 4, pp. 547-560 | DOI | MR | Zbl

[11] Y. Chen; L. Gélébart; C. Chateau; M. Bornert; C. Sauder; A. King Analysis of the damage initiation in a SiC/SiC composite tube from a direct comparison between large-scale numerical simulation and synchrotron X-ray micro-computed tomography, Int. J. Solids Struct., Volume 161 (2019), pp. 111-126 | DOI

[12] A. Marano; L. Gélébart; S. Forest Intragranular localization induced by softening crystal plasticity: Analysis of slip and kink bands localization modes from high resolution FFT-simulations results, Acta Mater., Volume 175 (2019), pp. 262-275 | DOI

[13] M. Schneider; D. Merkert; M. Kabel FFT-based homogenization for microstructures discretized by linear hexahedral elements, Int. J. Numer. Methods Eng., Volume 109 (2017) no. 10, pp. 1461-1489 | DOI | MR | Zbl

[14] F. Willot Fourier-based schemes for computing the mechanical response of composites with accurate local fields, C. R. Méc., Volume 343 (2015) no. 3, pp. 232-245

[15] L. Allais; M. Bornert; T. Bretheau; D. Caldemaison Experimental characterization of the local strain field in a heterogeneous elastoplastic material, Acta Metall., Volume 42 (1994) no. 11, pp. 3865-3880 | DOI

[16] H. Moulinec; P. Suquet A fast numerical-method for computing the linear and nonlinear mechanical-properties of composites, C. R. Acad. Sci. Ser. II, Volume 318 (1994) no. 11, pp. 1417-1423 | Zbl

[17] (Cast3m, www-cast3m.cea.fr)

[18] T. Belytschko; J. S.-J. Ong; W. K. Liu; J. M. Kennedy Hourglass control in linear and nonlinear problems, Comput. Methods Appl. Mech. Eng., Volume 43 (1984) no. 3, pp. 251-276 | DOI

Cité par Sources :

Commentaires - Politique


Ces articles pourraient vous intéresser

Grain size effects and weakest link theory in 3D crystal plasticity simulations of polycrystals

Lionel Gélébart

C. R. Phys (2021)


A numerical study of reversible plasticity using continuum dislocation mechanics

Stéphane Berbenni; Ricardo A. Lebensohn

C. R. Phys (2021)


Periodic boundary conditions for the numerical homogenization of composite tubes

Lionel Gélébart

C. R. Méca (2011)