Des isothermes pression–volume ont été déterminées sur trois systèmes hétérogènes « eau–zéolithe ». Les deux premiers concernent des zéolithes très hydrophobes, purement siliciques, la silicalite-1 (F−) et la zéolithe β (F−) ; le troisième est constitué par une zéolithe commerciale, plus hydrophile de type ZSM-5. Le diagramme P–V pour le système eau–silicalite-1 (F−), est caractérisé par un palier attribué à l'intrusion de l'eau dans les pores du matériau. A la détente, le phénomène est réversible. Ce système, capable d'accumuler et de restituer de l'énergie superficielle, constitue un ressort moléculaire. La courbe P–V pour la zéolithe β, présente un palier à la compression mais à la détente, le phénomène n'est pas réversible. Dans ce cas, le système capable d'absorber de l'énergie mécanique se comporte comme un pare-chocs. Le troisième système, basé sur la ZSM-5, plus hydrophile, présente une isotherme linéaire, sans palier. Ces résultats ouvrent des perspectives d'applications dans le domaine de l'énergétique pour des zéolithes très hydrophobes en contact avec l'eau.
Pressure–volume isotherms have been determined for three heterogeneous ‘water–zeolite’ systems. The first two concern hydrophobic purely siliceous zeolites: silicalite-1 (F−) and zeolite β (F−); the third comprises a more hydrophilic commercial zeolite of the type ZSM-5. The P–V diagram for the water–silicalite-1 (F−) system is characterized by a plateau corresponding to the intrusion of water inside the pores of the solid. During the release the phenomenon is reversible. This system, which is able to accumulate and restore superficial energy, constitutes a molecular spring. For zeolite β, the P–V curve displays a plateau during the compression, but during the release, the phenomenon is not reversible. In that case, the system absorbs mechanical energy and acts as a bumper. The third system, based on the more hydrophilic ZSM-5 zeolite shows a linear isotherm without any plateau. These results open new applications perspectives in the field of the energetics for hydrophobic zeolites in contact with water.
Révisé le :
Publié le :
Keywords: molecular springs, hydrophobic zeolites, pressure–volume isotherm, water intrusion–extrusion, energetics
Valentin Eroshenko 1 ; Robert-Charles Regis 2 ; Michel Soulard 3 ; Joël Patarin 3
@article{CRPHYS_2002__3_1_111_0, author = {Valentin Eroshenko and Robert-Charles Regis and Michel Soulard and Jo\"el Patarin}, title = {Les syst\`emes h\'et\'erog\`enes {\guillemotleft} eau{\textendash}z\'eolithe hydrophobe {\guillemotright}: de nouveaux ressorts mol\'eculaires}, journal = {Comptes Rendus. Physique}, pages = {111--119}, publisher = {Elsevier}, volume = {3}, number = {1}, year = {2002}, doi = {10.1016/S1631-0705(02)01285-9}, language = {fr}, }
TY - JOUR AU - Valentin Eroshenko AU - Robert-Charles Regis AU - Michel Soulard AU - Joël Patarin TI - Les systèmes hétérogènes « eau–zéolithe hydrophobe »: de nouveaux ressorts moléculaires JO - Comptes Rendus. Physique PY - 2002 SP - 111 EP - 119 VL - 3 IS - 1 PB - Elsevier DO - 10.1016/S1631-0705(02)01285-9 LA - fr ID - CRPHYS_2002__3_1_111_0 ER -
%0 Journal Article %A Valentin Eroshenko %A Robert-Charles Regis %A Michel Soulard %A Joël Patarin %T Les systèmes hétérogènes « eau–zéolithe hydrophobe »: de nouveaux ressorts moléculaires %J Comptes Rendus. Physique %D 2002 %P 111-119 %V 3 %N 1 %I Elsevier %R 10.1016/S1631-0705(02)01285-9 %G fr %F CRPHYS_2002__3_1_111_0
Valentin Eroshenko; Robert-Charles Regis; Michel Soulard; Joël Patarin. Les systèmes hétérogènes « eau–zéolithe hydrophobe »: de nouveaux ressorts moléculaires. Comptes Rendus. Physique, Volume 3 (2002) no. 1, pp. 111-119. doi : 10.1016/S1631-0705(02)01285-9. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01285-9/
[1] C. R. Acad. Sci. Ukraine Sér. A, 10 (1990), pp. 79-82
[2] V. Eroshenko, Brevet Inter. (Europe, USA, Japan) WO 96/18040, 13 juin 1996 ; Brevet français No 9414856, 30 mai 1997
[3] Entropie, 202/203 (1997), pp. 110-114
[4] Int. Conf. Seismic Isolation, Passive Energy Dissipation and Active Control of Seismic Vibration of Structures, Taormina, Italy, 1997, pp. 783-794
[5] Entropie, 196 (1996), pp. 17-23
[6] Nature, 271 (1978), pp. 512-516
[7] Zeolites, 9 (1989), pp. 397-404
[8] Zeolites, 17 (1996), pp. 1-230
[9] New Dev. in Zeol. Sci. and Tech. (Y. Murakami; A. Iijima; J.W. Ward, eds.), Studies in Surf. Sci. and Catal., 28, Elsevier, Amsterdam, 1986, pp. 121-128
[10] Chem. Commun. (1996), pp. 2365-2366
[11] Colloid J., 57 (1995) no. 4, pp. 446-449
[12] Phys. Chem., 85 (1981), pp. 2238-2243
[13] Proc. 5th Int. Conf. on Zeolites, Heyden, London (L.V. Rees, ed.), 1980, pp. 40-48
[14] Zeolites, 11 (1991), pp. 598-606
[15] J. Am. Chem. Soc., 121 (1999) no. 14, pp. 3368-3376
[16] Langmuir, 16 (2000), pp. 4374-4379
[17] Ind. Eng. Chem., 41 (1949), p. 780
[18] Ross. Khim. J. (D. Mendéléev), XL (1996) no. l, pp. 92-99
[19] Chem. Phys., 102 (1995) no. 21, pp. 8656-8661
[20] Cond. Matter, 3rd ser., 51 (1995) no. 14, pp. 8709-8714
[21] Dokl. Akad. Nauk SSSR, 261 (1981) no. 3, pp. 700-703
[22] Phys. Rev. Lett., 82 (1999) no. 11, pp. 2338-2341
[23] Handbook of Chemistry and Physics (D.R. Lide, ed.), CRC Press, New York, 1997–1998
[24] Phys. Chem., 48 (1994), pp. 6910-6918
[25] 9th Int. Symp. on Small Particles and Inorganic Clusters, Book of Abstracts, Lausanne, Switzerland, 1998, p. 85
[26] V. Eroshenko, École nationale supérieure de techniques avancées, Paris 27 juin 1996
[27] J. Chem. Phys., 110 (1999) no. 12, pp. 5960-5968
- Reversible Surface Energy Storage in Molecular-Scale Porous Materials, Molecules, Volume 29 (2024) no. 3, p. 664 | DOI:10.3390/molecules29030664
- What keeps nanopores boiling, The Journal of Chemical Physics, Volume 159 (2023) no. 11 | DOI:10.1063/5.0167530
- Compact Thermal Actuation by Water and Flexible Hydrophobic Nanopore, ACS Nano, Volume 15 (2021) no. 5, p. 9048 | DOI:10.1021/acsnano.1c02175
- The Pivotal Role of Critical Hydroxyl Concentration in Si-Rich Zeolites for Switching Vapor Adsorption, The Journal of Physical Chemistry C, Volume 125 (2021) no. 41, p. 22890 | DOI:10.1021/acs.jpcc.1c07124
- Bubble formation in nanopores: a matter of hydrophobicity, geometry, and size, Advances in Physics: X, Volume 5 (2020) no. 1, p. 1817780 | DOI:10.1080/23746149.2020.1817780
- Recent Progress to Understand and Improve Zeolite Stability in the Aqueous Medium, Petroleum Chemistry, Volume 60 (2020) no. 4, p. 420 | DOI:10.1134/s0965544120040143
- High-Pressure Infiltration–Expulsion of Aqueous NaCl in Planar Hydrophobic Nanopores, The Journal of Physical Chemistry C, Volume 124 (2020) no. 42, p. 23433 | DOI:10.1021/acs.jpcc.0c07184
- Gas-Induced Drying of Nanopores, The Journal of Physical Chemistry Letters, Volume 11 (2020) no. 21, p. 9171 | DOI:10.1021/acs.jpclett.0c02600
- Effect of Flexibility and Nanotriboelectrification on the Dynamic Reversibility of Water Intrusion into Nanopores: Pressure-Transmitting Fluid with Frequency-Dependent Dissipation Capability, ACS Applied Materials Interfaces, Volume 11 (2019) no. 43, p. 40842 | DOI:10.1021/acsami.9b14031
- Differential penetration of ethanol and water in Si-chabazite: High pressure dehydration of azeotrope solution, Microporous and Mesoporous Materials, Volume 284 (2019), p. 161 | DOI:10.1016/j.micromeso.2019.04.032
- Phase Transformations of Metal–Organic Frameworks MAF-6 and ZIF-71 during Intrusion–Extrusion Experiments, The Journal of Physical Chemistry C, Volume 123 (2019) no. 7, p. 4319 | DOI:10.1021/acs.jpcc.8b12047
- Dominant Role of Entropy in Stabilizing Sugar Isomerization Transition States within Hydrophobic Zeolite Pores, Journal of the American Chemical Society, Volume 140 (2018) no. 43, p. 14244 | DOI:10.1021/jacs.8b08336
- Energetic Performances of ZIF-8 Derivatives: Impact of the Substitution (Me, Cl, or Br) on Imidazolate Linker, The Journal of Physical Chemistry C, Volume 122 (2018) no. 7, p. 3846 | DOI:10.1021/acs.jpcc.7b08999
- Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices, Chemical Society Reviews, Volume 46 (2017) no. 23, p. 7421 | DOI:10.1039/c7cs00478h
- Influence of LiCl aqueous solution concentration on the energetic performances of pure silica chabazite, New Journal of Chemistry, Volume 41 (2017) no. 7, p. 2586 | DOI:10.1039/c6nj03730e
- A molecular dynamics study of the interaction of water with the external surface of silicalite-1, Physical Chemistry Chemical Physics, Volume 19 (2017) no. 4, p. 2950 | DOI:10.1039/c6cp06770k
- Intrusion and extrusion of water in hydrophobic nanopores, Proceedings of the National Academy of Sciences, Volume 114 (2017) no. 48 | DOI:10.1073/pnas.1714796114
- Observation of relaxation of the metastable state of a non-wetting liquid dispersed in a nanoporous medium, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 496 (2016), p. 63 | DOI:10.1016/j.colsurfa.2015.08.022
- Monitoring local configuration and anomalously slow relaxation of a nonergodic system of interacting liquid nanoclusters in a disordered confinement of a random porous medium, Journal of Physics: Conference Series, Volume 751 (2016), p. 012033 | DOI:10.1088/1742-6596/751/1/012033
- Considerations on the symmetry of pure silica ITQ-7 zeolite (ISV) derived from 29 Si MAS NMR and Rietveld analysis, Microporous and Mesoporous Materials, Volume 219 (2016), p. 306 | DOI:10.1016/j.micromeso.2015.07.002
- High pressure intrusion–extrusion of electrolyte solutions in aluminosilicate FAU and *BEA-type zeolites, Microporous and Mesoporous Materials, Volume 221 (2016), p. 1 | DOI:10.1016/j.micromeso.2015.08.040
- Intrusion–extrusion spring performance of –COK-14 zeolite enhanced by structural changes, Physical Chemistry Chemical Physics, Volume 18 (2016) no. 28, p. 18795 | DOI:10.1039/c6cp03162e
- Anomalously slow relaxation of interacting liquid nanoclusters confined in a porous medium, Physical Review E, Volume 93 (2016) no. 2 | DOI:10.1103/physreve.93.022142
- Anomalously slow relaxation of the system of liquid clusters in a disordered nanoporous medium according to the self-organized criticality scenario, Physics Letters A, Volume 380 (2016) no. 18-19, p. 1615 | DOI:10.1016/j.physleta.2016.03.004
- The Direct Heat Measurement of Mechanical Energy Storage Metal–Organic Frameworks, Angewandte Chemie, Volume 127 (2015) no. 15, p. 4709 | DOI:10.1002/ange.201411202
- The Direct Heat Measurement of Mechanical Energy Storage Metal–Organic Frameworks, Angewandte Chemie International Edition, Volume 54 (2015) no. 15, p. 4626 | DOI:10.1002/anie.201411202
- States of a dispersed nonwetting liquid in a disordered nanoporous medium, International Journal of Modern Physics B, Volume 29 (2015) no. 15, p. 1550097 | DOI:10.1142/s0217979215500976
- Anomalously slow relaxation of a nonwetting liquid in the disordered confinement of a nanoporous medium, Journal of Experimental and Theoretical Physics, Volume 121 (2015) no. 6, p. 1027 | DOI:10.1134/s1063776115120043
- Continuum percolation on nonorientable surfaces: the problem of permeable disks on a Klein bottle, Journal of Physics A: Mathematical and Theoretical, Volume 48 (2015) no. 47, p. 475002 | DOI:10.1088/1751-8113/48/47/475002
- The Parameters of the Disordered Nanoporous Medium, Physics Procedia, Volume 72 (2015), p. 14 | DOI:10.1016/j.phpro.2015.09.004
- Dispersion of a Nonwetting Liquid in a Disordered Nanoporous Medium, Physics Procedia, Volume 72 (2015), p. 22 | DOI:10.1016/j.phpro.2015.09.005
- Observation of the Anomalously Slow Relaxation of a Nonergodic System of Interacting Liquid Nanoclusters in a Disordered Confinement of a Random Porous Medium, Physics Procedia, Volume 72 (2015), p. 4 | DOI:10.1016/j.phpro.2015.09.001
- Dynamic Control of Nanopore Wetting in Water and Saline Solutions under an Electric Field, The Journal of Physical Chemistry B, Volume 119 (2015) no. 29, p. 8890 | DOI:10.1021/jp506389p
- High-Pressure Intrusion–Extrusion of Water and Electrolyte Solutions in Pure-Silica LTA Zeolite, The Journal of Physical Chemistry C, Volume 119 (2015) no. 51, p. 28319 | DOI:10.1021/acs.jpcc.5b09861
- High-pressure-induced structural changes, amorphization and molecule penetration in MFI microporous materials: a review, Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials, Volume 70 (2014) no. 3, p. 444 | DOI:10.1107/s2052520614008014
- Zeolites from a Materials Chemistry Perspective, Chemistry of Materials, Volume 26 (2014) no. 1, p. 239 | DOI:10.1021/cm401914u
- Water intrusion/extrusion in hydrophobized mesoporous silica gel in a wide temperature range: Capillarity, bubble nucleation and line tension effects, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 441 (2014), p. 549 | DOI:10.1016/j.colsurfa.2013.10.022
- Pressure-induced water intrusion in FER-type zeolites and the influence of extraframework species on structural deformations, Microporous and Mesoporous Materials, Volume 191 (2014), p. 27 | DOI:10.1016/j.micromeso.2014.02.036
- Drastic change of the intrusion–extrusion behavior of electrolyte solutions in pure silica *BEA-type zeolite, Phys. Chem. Chem. Phys., Volume 16 (2014) no. 33, p. 17893 | DOI:10.1039/c4cp01862a
- Fluctuations of the number of neighboring pores and appearance of multiple nonergodic states of a nonwetting liquid confined in a disordered nanoporous medium, Physics Letters A, Volume 378 (2014) no. 38-39, p. 2888 | DOI:10.1016/j.physleta.2014.07.045
- Energetic performances of pure silica STF and MTT-type zeolites under high pressure water intrusion, RSC Adv., Volume 4 (2014) no. 71, p. 37655 | DOI:10.1039/c4ra05519e
- Multiplicity of metastable nonergodic states of a dispersed nonwetting liquid in a disordered nanoporous medium, The European Physical Journal B, Volume 87 (2014) no. 10 | DOI:10.1140/epjb/e2014-50342-7
- Versatile Energetic Behavior of ZIF-8 upon High Pressure Intrusion–Extrusion of Aqueous Electrolyte Solutions, The Journal of Physical Chemistry C, Volume 118 (2014) no. 14, p. 7321 | DOI:10.1021/jp412354f
- Energetic Performances of “ZIF-71–Aqueous Solution” Systems: A Perfect Shock-Absorber with Water, The Journal of Physical Chemistry C, Volume 118 (2014) no. 37, p. 21316 | DOI:10.1021/jp505484x
- Beyond shape selective catalysis with zeolites: Hydrophobic void spaces in zeolites enable catalysis in liquid water, AIChE Journal, Volume 59 (2013) no. 9, p. 3349 | DOI:10.1002/aic.14016
- Improved hydrophobicity of inorganic–organic hybrid mesoporous silica with cage-like pores, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 421 (2013), p. 34 | DOI:10.1016/j.colsurfa.2012.11.066
- Thermomechanical and thermophysical properties of repulsive clathrates, Journal of Applied Mechanics and Technical Physics, Volume 54 (2013) no. 5, p. 798 | DOI:10.1134/s0021894413050131
- Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves, Journal of Catalysis, Volume 308 (2013), p. 176 | DOI:10.1016/j.jcat.2013.06.016
- Dispersion transition and the nonergodicity of the disordered nanoporous medium-nonwetting liquid system, Journal of Experimental and Theoretical Physics, Volume 117 (2013) no. 6, p. 1139 | DOI:10.1134/s1063776113140094
- Simulating Adsorptive Expansion of Zeolites: Application to Biomass-Derived Solutions in Contact with Silicalite, Langmuir, Volume 29 (2013) no. 15, p. 4866 | DOI:10.1021/la300932a
- Evolution of the energetic characteristics of silicalite-1 + water repulsive clathrates in a wide temperature range, Physical Chemistry Chemical Physics, Volume 15 (2013) no. 12, p. 4451 | DOI:10.1039/c3cp44587a
- Energetic behavior of the pure silica ITQ-12 (ITW) zeolite under high pressure water intrusion, Physical Chemistry Chemical Physics, Volume 15 (2013) no. 46, p. 20320 | DOI:10.1039/c3cp53570c
- Kinetics of the dispersion transition and nonergodicity of a system consisting of a disordered porous medium and a nonwetting liquid, Physical Review E, Volume 88 (2013) no. 5 | DOI:10.1103/physreve.88.052116
- Maxwell’s relations and thermal coefficients for repulsive clathrates, Technical Physics, Volume 58 (2013) no. 8, p. 1087 | DOI:10.1134/s1063784213080124
- High-Pressure Water Intrusion Investigation of Pure Silica ITQ-7 Zeolite, The Journal of Physical Chemistry C, Volume 117 (2013) no. 8, p. 4098 | DOI:10.1021/jp311921d
- Rheology and dynamics of repulsive clathrates, Journal of Applied Mechanics and Technical Physics, Volume 53 (2012) no. 1, p. 98 | DOI:10.1134/s0021894412010130
- Dynamic properties of water in silicalite-1 powder, Magnetic Resonance Imaging, Volume 30 (2012) no. 7, p. 1022 | DOI:10.1016/j.mri.2012.02.026
- Energetic Performances of Channel and Cage-Type Zeosils, The Journal of Physical Chemistry C, Volume 116 (2012) no. 38, p. 20389 | DOI:10.1021/jp305632m
- Adsorption of Methyl Tertiary Butyl Ether and Trichloroethylene in MFI-Type Zeolites, The Journal of Physical Chemistry C, Volume 116 (2012) no. 41, p. 21836 | DOI:10.1021/jp3067052
- Water–Hydrophobic Zeolite Systems, The Journal of Physical Chemistry C, Volume 116 (2012) no. 47, p. 24916 | DOI:10.1021/jp306188m
- Energetic Performances of STT-Type Zeosil: Influence of the Nature of the Mineralizing Agent Used for the Synthesis, The Journal of Physical Chemistry C, Volume 116 (2012) no. 7, p. 4802 | DOI:10.1021/jp211819p
- Thermodynamic analysis of capillary flows in the presence of hydrodynamic slip, AIChE Journal, Volume 57 (2011) no. 8, p. 2251 | DOI:10.1002/aic.12431
- Nanoporous Solids: Materials for a Sustainable Development, Advanced Materials Research, Volume 324 (2011), p. 26 | DOI:10.4028/www.scientific.net/amr.324.26
- Correlation effects during liquid infiltration into hydrophobic nanoporous media, Journal of Experimental and Theoretical Physics, Volume 112 (2011) no. 3, p. 385 | DOI:10.1134/s1063776111010055
- The infiltration of nonwetting liquid into nanoporous media and the thermal effect, Journal of Physics: Conference Series, Volume 291 (2011), p. 012044 | DOI:10.1088/1742-6596/291/1/012044
- Monte Carlo Simulation of Water Adsorption in Hydrophobic MFI Zeolites with Hydrophilic Sites, Langmuir, Volume 27 (2011) no. 8, p. 4986 | DOI:10.1021/la200685c
- High pressure water intrusion investigation of pure silica 1D channel AFI, MTW and TON-type zeolites, Microporous and Mesoporous Materials, Volume 146 (2011) no. 1-3, p. 119 | DOI:10.1016/j.micromeso.2011.03.043
- High-Pressure Water Intrusion Investigation of Pure Silica RUB-41 and S-SOD Zeolite Materials, The Journal of Physical Chemistry C, Volume 115 (2011) no. 2, p. 425 | DOI:10.1021/jp109064e
- Atomistic Simulation of Water Intrusion–Extrusion in ITQ-4 (IFR) and ZSM-22 (TON): The Role of Silanol Defects, The Journal of Physical Chemistry C, Volume 115 (2011) no. 44, p. 21942 | DOI:10.1021/jp207020w
- The Fluoride Route: A Good Opportunity for the Preparation of 2D and 3D Inorganic Microporous Frameworks, Functionalized Inorganic Fluorides (2010), p. 489 | DOI:10.1002/9780470660768.ch16
- Water behaviour in nanoporous aluminosilicates, Journal of Physics: Condensed Matter, Volume 22 (2010) no. 28, p. 284115 | DOI:10.1088/0953-8984/22/28/284115
- Determination of water intrusion heat in hydrophobic microporous materials by high pressure calorimetry, Microporous and Mesoporous Materials, Volume 134 (2010) no. 1-3, p. 8 | DOI:10.1016/j.micromeso.2010.05.001
- New insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure, Physical Chemistry Chemical Physics, Volume 12 (2010) no. 37, p. 11454 | DOI:10.1039/c000931h
- Investigation of the Energetic Performance of Pure Silica ITQ-4 (IFR) Zeolite under High Pressure Water Intrusion, The Journal of Physical Chemistry C, Volume 114 (2010) no. 26, p. 11650 | DOI:10.1021/jp102663f
- Water intrusion in mesoporous silicalite-1: An increase of the stored energy, Microporous and Mesoporous Materials, Volume 117 (2009) no. 3, p. 627 | DOI:10.1016/j.micromeso.2008.08.005
- Thermodynamic study of water confinement in hydrophobic zeolites by Monte Carlo simulations, Molecular Simulation, Volume 35 (2009) no. 1-2, p. 24 | DOI:10.1080/08927020802398900
- Molecular simulations of water in hydrophobic microporous solids, Adsorption, Volume 14 (2008) no. 4-5, p. 733 | DOI:10.1007/s10450-008-9135-8
- Thermodynamics of water intrusion in nanoporous hydrophobic solids, Physical Chemistry Chemical Physics, Volume 10 (2008) no. 32, p. 4817 | DOI:10.1039/b807471b
- Grand Canonical Monte Carlo Simulation Study of Water Adsorption in Silicalite at 300 K, The Journal of Physical Chemistry B, Volume 112 (2008) no. 20, p. 6390 | DOI:10.1021/jp7097153
- Pure Silica Chabazite Molecular Spring: A Structural Study on Water Intrusion−Extrusion Processes, The Journal of Physical Chemistry B, Volume 112 (2008) no. 24, p. 7257 | DOI:10.1021/jp711889k
- Does Water Condense in Hydrophobic Cavities? A Molecular Simulation Study of Hydration in Heterogeneous Nanopores, The Journal of Physical Chemistry C, Volume 112 (2008) no. 28, p. 10435 | DOI:10.1021/jp710746b
- The Effect of Local Defects on Water Adsorption in Silicalite-1 Zeolite: A Joint Experimental and Molecular Simulation Study, Langmuir, Volume 23 (2007) no. 20, p. 10131 | DOI:10.1021/la7011205
- Modelling studies of water in crystalline nanoporous aluminosilicates, Phys. Chem. Chem. Phys., Volume 9 (2007) no. 2, p. 226 | DOI:10.1039/b614463m
- A new paradigm of mechanical energy dissipation. Part 1: Theoretical aspects and practical solutions, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Volume 221 (2007) no. 3, p. 285 | DOI:10.1243/09544070d01505
- Temperature dependence of working pressure of a nanoporous liquid spring, Applied Physics Letters, Volume 89 (2006) no. 25 | DOI:10.1063/1.2408664
- Thermomechanics of the variation of interfaces in heterogeneous lyophobic systems, AIChE Journal, Volume 51 (2005) no. 4, p. 1246 | DOI:10.1002/aic.10371
- Water Condensation in Hydrophobic Nanopores, Angewandte Chemie, Volume 117 (2005) no. 33, p. 5444 | DOI:10.1002/ange.200501250
- Water Condensation in Hydrophobic Nanopores, Angewandte Chemie International Edition, Volume 44 (2005) no. 33, p. 5310 | DOI:10.1002/anie.200501250
- Anomalous adsorption behavior observed during the characterization of a polystyrene film prepared on a mesoporous material, Journal of Colloid and Interface Science, Volume 275 (2004) no. 1, p. 48 | DOI:10.1016/j.jcis.2004.01.011
- Molecular spring or bumper: A new application for hydrophobic zeolitic materials, Recent Advances in the Science and Technology of Zeolites and Related Materials Part B, Proceedings of the 14th International Zeolite Conference, Volume 154 (2004), p. 1830 | DOI:10.1016/s0167-2991(04)80716-x
- Applications of Thermal Analysis and Calorimetry in Adsorption and Surface Chemistry, Applications to Inorganic and Miscellaneous Materials - Handbook of Thermal Analysis and Calorimetry, Volume 2 (2003), p. 1 | DOI:10.1016/s1573-4374(03)80005-5
- Behavior of Water in the Hydrophobic Zeolite Silicalite at Different Temperatures. A Molecular Dynamics Study, The Journal of Physical Chemistry B, Volume 107 (2003) no. 18, p. 4426 | DOI:10.1021/jp0300849
Cité par 92 documents. Sources : Crossref
Commentaires - Politique