[Interactions électroniques ultrarapides dans des agrégats métalliques]
L'extension récente des techniques femtosecondes résolues en temps à l'étude des mécanismes d'interaction électronique dans les agrégats métalliques permet de suivre leur évolution d'un métal massif à un métal confiné. Les resultats obtenus en fonction de la taille dans des matériaux modèles, les métaux nobles, sont présentés, en nous focalisant sur l'impact du confinement sur les processus de redistribution de l'énergie (couplages électrons–électrons et électrons–phonons). Leurs applications à l'étude des propriétés des vibrations acoustiques des agrégats et du transfert d'énergie agrégat-matrice sont également discutées.
The recent extension of time-resolved femtosecond optical techniques to the investigation of the ultrafast electron scattering processes in metal clusters offers the unique possibility to follow their evolution from a bulk to a confined metal. The size dependent results obtained in model materials, the noble metals, are presented, focusing on the impact of the confinement on energy redistribution processes (electron–electron and electron–phonon coupling). Their application to the investigation of the acoustic vibration property of cluster and to the cluster-surrounding matrix energy transfers are also discussed.
Accepté le :
Publié le :
Mots-clés : agrégats métalliques, spectroscopie femtoseconde, interactions électronique
Natalia Del Fatti 1 ; Fabrice Vallée 1
@article{CRPHYS_2002__3_3_365_0, author = {Natalia Del Fatti and Fabrice Vall\'ee}, title = {Ultrafast electron interactions in metal clusters}, journal = {Comptes Rendus. Physique}, pages = {365--380}, publisher = {Elsevier}, volume = {3}, number = {3}, year = {2002}, doi = {10.1016/S1631-0705(02)01317-8}, language = {en}, }
Natalia Del Fatti; Fabrice Vallée. Ultrafast electron interactions in metal clusters. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 365-380. doi : 10.1016/S1631-0705(02)01317-8. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01317-8/
[1] C. R. Acad. Sci., 2 (2001), p. 1469
[2] Phys. Rev. B, 50 (1994), p. 15337
[3] Phys. Rev. B, 51 (1995), p. 11433
[4] Phys. Rev. B, 61 (2000), p. 16956
[5] Phys. Rev. B, 68 (1992), p. 2834
[6] Phys. Rev. B, 57 (1998), p. 12812
[7] Phys. Rev. Lett., 79 (1997), p. 5158
[8] Phys. Rev. B, 55 (1997), p. 10869
[9] Phys. Rev. Lett., 64 (1990), p. 2172
[10] Phys. Rev. Lett., 81 (1998), p. 922
[11] , Progress in Optics, XXIX, North-Holland, Amsterdam, 1991, p. 321
(E. Wold, ed.)[12] J. Opt. Soc. Am. B, 7 (1990), p. 790
[13] Ultrafast Phenomena XI (T. Elsaesser; J.G. Fujimoto; D.A. Wiersma; W. Zinth, eds.), Springer-Verlag, Berlin, 1998, p. 356
[14] J. Phys. Chem. B, 105 (2001), p. 2264 (For a review see)
[15] J. Phys. Chem. B, 103 (1999), p. 8410
[16] Appl. Phys. Lett., 65 (1994), p. 941
[17] Phys. Rev. Lett., 75 (1995), p. 4702
[18] Phys. Rev. Lett., 78 (1997), p. 2192
[19] Phys. Rev. Lett., 78 (1997), p. 3575
[20] Chem. Phys., 251 (2000), p. 215
[21] Appl. Phys. B, 73 (2001), p. 283
[22] J. Phys. Soc. Jap., 21 (1966), p. 1765
[23] Z. Phys. B, 21 (1975), p. 339
[24] Optical Properties of Metal Clusters, Springer, Berlin, 1995
[25] Nanostructured Materials (V.M. Shalaev; M. Moskovits, eds.), American Chemical Society, Washington, 1997, p. 70
[26] Phys. Rev. B, 6 (1972), p. 4370
[27] Solid State Physics, Holt–Saunders, Tokyo, 1981
[28] C. J. Opt. Soc. Am. B, 3 (1986), p. 1647
[29] Phys. Rev. B, 48 (1993), p. 18178
[30] Appl. Phys. B, 68 (1999), p. 419
[31] Phys. Rev. Lett., 83 (1999), p. 4421
[32] Appl. Phys. B, 68 (1999), p. 425
[33] Eur. Phys. J. D, 16 (2001), p. 139
[34] Appl. Phys. B, 68 (1999), p. 393
[35] Principles of the Theory of Solids, Cambridge University Press, Cambridge, 1969
[36] Phys. Rev. B, 61 (2000), p. 9427
[37] Phys. Rev. B, 10 (1974), p. 484
[38] Phys. Rev. Lett., 85 (2000), p. 2200
[39] The Theory of Quantum Liquids, Benjamin, New York, 1966
[40] Phys. Rev. B, 29 (1984), p. 1558
[41] Phys. Rev. Lett., 70 (1993), p. 2036
[42] Phys. Rev. B, 48 (1993), p. 11317
[43] Phys. Rev. Lett., 80 (1998), p. 5105
[44] Appl. Phys. B, 68 (1999), p. 415
[45] Appl. Phys. Lett., 75 (1999), p. 3799
[46] Phys. Rev. B, 63 (2001), p. 104 (302)
[47] Zh. Eksp. Teor. Fiz., 31 (1957), p. 232 [Sov. Phys. JETP 4 (1957) 173]
[48] Phys. Rev. Lett., 58 (1987), p. 1680
[49] Phys. Rev. B, 48 (1993), p. 12365
[50] Phys. Rev. B, 43 (1991), p. 4488
[51] J. Phys. Chem. B, 102 (1998), p. 6958
[52] J. Chem. Phys., 112 (2000), p. 5942
[53] Phys. Rev. B, 60 (1999), p. 11738
[54] Appl. Phys. Lett., 75 (1999), p. 1712
[55] Appl. Phys. Lett., 62 (1993), p. 249
[56] Appl. Phys. B, 68 (1999), p. 433
[57] J. Chem. Phys., 111 (1999), p. 8613
[58] Chem. Phys. Lett., 270 (1997), p. 139
[59] Phys. Rev. B, 53 (1996), p. 15497
[60] Surf. Science, 239 (1990), p. 143
[61] Int. J. Electr., 73 (1992), p. 955
[62] J. Lum., 70 (1996), p. 129
[63] Acc. Chem. Res., 30 (1997), p. 423
[64] Proc. London Math. Soc., 13 (1882), p. 189
[65] J. Phys. C, 16 (1983), p. 4779
[66] Sol. State Comm., 38 (1981), p. 1073
[67] Earth Phys., 17 (1981), p. 494
[68] Geophys. Mag., 31 (1962), p. 15
[69] Appl. Surf. Science, 164 (2000), p. 131
[70] C. Voisin, D. Christofilos, N. Del Fatti, F. Vallée, Physica B (to be published)
[71] Phys. Rev. B, 57 (1998), p. 341 (and references therein)
[72] Phys. Rev. B, 44 (1991), p. 6243
[73] J. Chem. Phys., 104 (1996), p. 9735
[74] J. Chem. Phys., 115 (2001), p. 3444
[75] Phys. Rev. Lett., 79 (1997), p. 5102
[76] Appl. Phys. Lett., 73 (1998), p. 2149
[77] Phys. Rev. B, 55 (1997), p. R13424
[78] J. Chem. Phys., 110 (1999), p. 11484
[79] J. Phys. Chem. A, 104 (2000), p. 4321
[80] C. Voisin, Ph.D. Thesis, Orsay University, 2001
[81] Adv. Phys., 29 (1980), p. 609
[82] Phys. Rev. Lett., 76 (1996), p. 4250
[83] Phys. Rev. Lett., 78 (1997), p. 4861
[84] Phys. Rev. B, 57 (1998), p. R700
[85] Phys. Rev. Lett., 80 (1998), p. 4249
[86] Appl. Phys. Lett., 74 (1999), p. 61
[87] Appl. Phys. Lett., 75 (1999), p. 3500
[88] Phys. Rep., 272 (1996), p. 61
[89] Chem. Mater., 9 (1997), p. 950
[90] Phys. Rev. Lett., 82 (1999), p. 2590
[91] Phys. Rev. Lett., 84 (2000), p. 4721
[92] Phys. Rev. Lett., 84 (2000), p. 5840
- Thermal dynamics of gold nanoshell dimers under femtosecond laser pulse irradiation: A numerical approach, International Journal for Numerical Methods in Biomedical Engineering, Volume 39 (2023) no. 12 | DOI:10.1002/cnm.3773
- Nonlinear spectroscopy of plasmonic nanoparticles, Advances in Physics: X, Volume 3 (2018) no. 1, p. 1454341 | DOI:10.1080/23746149.2018.1454341
- Ultrafast Nonlinear Plasmonics, Plasmonics: Theory and Applications, Volume 15 (2013), p. 167 | DOI:10.1007/978-94-007-7805-4_5
- Heterodyne picosecond thermoreflectance applied to nanoscale thermal metrology, Journal of Applied Physics, Volume 110 (2011) no. 11 | DOI:10.1063/1.3665129
- Signal analysis and characterization of experimental setup for the transient thermoreflectance technique, Review of Scientific Instruments, Volume 77 (2006) no. 8 | DOI:10.1063/1.2336187
- Size dependence investigations of hot electron cooling dynamics in metal/adsorbates nanoparticles, Chemical Physics, Volume 319 (2005) no. 1-3, p. 409 | DOI:10.1016/j.chemphys.2005.06.040
- Ultrafast electron-electron scattering and energy exchanges in noble-metal nanoparticles, Physical Review B, Volume 69 (2004) no. 19 | DOI:10.1103/physrevb.69.195416
- Ultrafast chemical interface scattering as an additional decay channel for nascent nonthermal electrons in small metal nanoparticles, The Journal of Chemical Physics, Volume 120 (2004) no. 19, p. 9302 | DOI:10.1063/1.1710856
Cité par 8 documents. Sources : Crossref
Commentaires - Politique