Comptes Rendus
Agrégats comme précurseurs des nano-objets/Clusters as precursors of nano-objects
Met-Cars: a unique class of molecular clusters
[Met-Cars : une classe unique d'agrégats moléculaires]
Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 251-272.

L'intérêt primordial des systèmes de taille finie réside dans les propriétés spécifiques qu'ils présentent, qui diffèrent de celles de leurs constituants et de celles du solide correspondant. Ces systèmes, dont on peut choisir la composition et pour lesquels les propriétés des constituants individuels sont préservées, apparaissent particulièrement séduisant car ils sont utilisables comme briques élémentaires pour construire des matériaux nanostructurés. En 1992, nous avons découvert une nouvelle catégorie d'agrégats moléculaires, les « Met-Cars », impliquant une liaison carbone-M où M est un atome des premiers métaux de transition, avec une stoechiométrie M8C12. Les calculs ainsi que les données expérimentales récentes suggèrent pour ces espèces un comportement de type à électrons libres, ce que l'on peut montrer clairement en changeant la nature du métal. La possibilité de produire des « Met-Cars » avec différents atomes internes et différents atomes, métalliques ou non, pour la cage, montre bien que ces édifices sont précieux pour appréhender les propriétés de la matière condensée de taille finie. Ceci ouvre aussi une large voie d'exploration quant à leur utilisation comme briques élémentaires pour élaborer de nouveaux matériaux. Leur découverte, leur production et la dynamique de leur ionisation, sont présentées.

Currently there is extensive interest in systems of finite size as they often give rise to unique properties that differ from those of an extended solid or the individual molecular constituents of which they are comprised. Particularly interesting are systems whose composition can be selectively chosen, and ones whose individual characteristics may be retained, thus allowing them to serve as the building blocks for nanostructured/cluster-assembled materials. In 1992 we discovered a new class of molecular clusters termed metallocarbohedrenes, or Met-Cars for short, which involve bonding between early transition metals and carbon with a stoichiometry of M8C12. Calculations, as well as recent experimental findings, suggest that these species exhibit considerable free electron behavior which becomes manifested through observations of changing electronic energy levels with the nature of the metal. Indications that it is possible to produce Met-Cars with various endohedral atoms, as well as the finding that other metals and non-metal atoms may also be substituted in the cage lattice, suggest that these cluster materials are valuable in the context of unraveling the properties of condensed matter of finite size. This also opens an avenue for exploring the prospect that they may provide building blocks for new materials. Their discovery, formation, and ionization dynamics are reviewed herein.

Reçu le :
Accepté le :
Publié le :
DOI : 10.1016/S1631-0705(02)01319-1
Keywords: Met-Cars, delayed ionization, cluster, ionization potential, electron relaxation dynamics
Mots-clés : Met-Cars, ionisation retardée, agrégat, potentiel d'ionisation, dynamique de relaxation des électrons

Brian D. Leskiw 1 ; A.Welford Castleman 1

1 Departments of Chemistry and Physics, The Pennsylvania State University, University Park, PA 16802, USA
@article{CRPHYS_2002__3_3_251_0,
     author = {Brian D. Leskiw and A.Welford Castleman},
     title = {Met-Cars: a unique class of molecular clusters},
     journal = {Comptes Rendus. Physique},
     pages = {251--272},
     publisher = {Elsevier},
     volume = {3},
     number = {3},
     year = {2002},
     doi = {10.1016/S1631-0705(02)01319-1},
     language = {en},
}
TY  - JOUR
AU  - Brian D. Leskiw
AU  - A.Welford Castleman
TI  - Met-Cars: a unique class of molecular clusters
JO  - Comptes Rendus. Physique
PY  - 2002
SP  - 251
EP  - 272
VL  - 3
IS  - 3
PB  - Elsevier
DO  - 10.1016/S1631-0705(02)01319-1
LA  - en
ID  - CRPHYS_2002__3_3_251_0
ER  - 
%0 Journal Article
%A Brian D. Leskiw
%A A.Welford Castleman
%T Met-Cars: a unique class of molecular clusters
%J Comptes Rendus. Physique
%D 2002
%P 251-272
%V 3
%N 3
%I Elsevier
%R 10.1016/S1631-0705(02)01319-1
%G en
%F CRPHYS_2002__3_3_251_0
Brian D. Leskiw; A.Welford Castleman. Met-Cars: a unique class of molecular clusters. Comptes Rendus. Physique, Volume 3 (2002) no. 3, pp. 251-272. doi : 10.1016/S1631-0705(02)01319-1. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(02)01319-1/

[1] B.C. Guo; A.W. Castleman J. Am. Soc. Mass Spectrom., 3 (1992), p. 464

[2] B.C. Guo; A.W. Castleman Int. J. Mass Spectrom. Ion Proc., 113 (1992), p. R1

[3] B.C. Guo; K.P. Kerns; A.W. Castleman Int. J. Mass Spectrom. Ion Proc., 117 (1992), p. 129

[4] B.C. Guo; K.P. Kerns; A.W. Castleman J. Phys. Chem., 96 (1992), p. 6931

[5] B.C. Guo; A.W. Castleman J. Am. Chem. Soc., 114 (1992), p. 6152

[6] B.C. Guo; K.P. Kerns; A.W. Castleman Science, 255 (1992), p. 1411

[7] B.C. Guo; S. Wei; J. Purnell; S. Buzza; A.W. Castleman Science, 256 (1992), p. 515

[8] S. Wei; B.C. Guo; J. Purnell; S. Buzza; A.W. Castleman J. Phys. Chem., 96 (1992), p. 4166

[9] S. Wei; B.C. Guo; J. Purnell; S. Buzza; A.W. Castleman Science, 256 (1992), p. 818

[10] B.C. Guo; S. Wei; Z. Chen; J. Purnell; S. Buzza; K.P. Kerns; A.W. Castleman J. Chem. Phys., 97 (1992), p. 5243

[11] Z.Y. Chen; B.C. Guo; B.D. May; S. Cartier; A.W. Castleman Chem. Phys. Lett., 198 (1992), p. 118

[12] A.W. Castleman; B.C. Guo; S. Wei Clusters and Fullerenes (V. Kumas; T.P. Martin; E. Tosatti, eds.), World Scientific, Singapore, 1993, p. 3

[13] A.W. Castleman; B.C. Guo; S. Wei; Z.Y. Chen (K. Lackner; W. Lindinger, eds.), Plasma Physics and Controlled Fusion, 34, Pergamon Press, Oxford, 1992, p. 2047

[14] B.C. Guo; A.W. Castleman (M.A. Duncan, ed.), Advances in Metal and Semiconductor Clusters, 2, JAI Press, 1994, p. 137

[15] A.W. Castleman 1994 McGraw-Hill Yearbook of Science and Technology, 1993 (p. 263)

[16] A.W. Castleman Z. Phys. D., 26 (1993), p. 159

[17] Z.Y. Chen; A.W. Castleman Proc. 40th ASMS Conference on Mass Spectrometry and Allied Topics, 1992, p. 1480

[18] A.W. Castleman R&D Innovator, 2 ( February 1993 )

[19] B.C. Guo; K.P. Kerns; A.W. Castleman J. Am. Chem. Soc., 115 (1993), p. 7415

[20] Z.Y. Chen; G.J. Walder; A.W. Castleman Phys. Rev. B, 49 (1994), p. 2739

[21] Z.Y. Chen; A.W. Castleman J. Chem. Phys., 98 (1993), p. 231

[22] B.C. Guo; K.P. Kerns; A.W. Castleman J. Chem. Phys., 96 (1992), p. 8177

[23] Z.Y. Chen; G.J. Walder; A.W. Castleman J. Phys. Chem., 96 (1992), p. 9581

[24] R.W. Grimes; J.D. Gale J. Chem. Soc., Chem. Commun. (1992), p. 1222

[25] B.V. Reddy; S.N. Khanna; P. Jena Science, 258 (1992), p. 1640

[26] T. Rantala; D.A. Jelski; J.R. Bowser; X. Xia; T.F. George Z. Phys. D., 26 (1993), p. 255

[27] M. Methfessel; M. van Schilfgaarde; M. Scheffler Phys. Rev. Lett., 70 (1993), p. 29

[28] P. Jena; S.N. Khanna; B.K. Rao Clusters and Fullerenes (V. Kumar; T.P. Martin; E. Tosatti, eds.), World Scientific, 1992, p. 73

[29] R.W. Grimes; J.D. Gale J. Phys. Chem., 97 (1993), p. 4616

[30] B.V. Reddy; S.N. Khanna Chem. Phys. Lett., 209 (1993), p. 104

[31] B.-L. Li; Z.-Q. Gu; R.-S. Han; Q.-Q. Zheng Z. Phys. D., 27 (1993), p. 275

[32] L. Lou; T. Guo; P. Nordlander; R.E. Smalley J. Chem. Phys., 99 (1993), p. 5301

[33] A. Ceulemans; P.W. Fowler J. Chem. Soc. Faraday Trans., 88 (1992), p. 2797

[34] L. Pauling Proc. Natl. Acad. Sci., 89 (1992), p. 8175

[35] M.-M. Rohmer; P. De Vaal; M. Bénard J. Am. Chem. Soc., 114 (1992), p. 9696

[36] Z. Lin; M.B. Hall J. Am. Chem. Soc., 114 (1992), p. 10054

[37] P.J. Hay J. Phys. Chem., 97 (1993), p. 3081

[38] I. Dance J. Chem. Soc., Chem. Commun. (1992), p. 1779

[39] H. Chen; M. Feyereisen; X.P. Long; G. Fitzgerald Phys. Rev. Lett., 71 (1993), p. 1732

[40] A. Khan J. Phys. Chem., 97 (1993), p. 10937

[41] M.-M. Rohmer; M. Bénard; C. Henriet; C. Bo; J.-M. Poblet J. Chem. Soc., Chem. Commun., 15 (1993), p. 1182

[42] Z. Lin; M.B. Hall J. Am. Chem. Soc., 115 (1993), p. 11165

[43] H. Sakurai; A.W. Castleman J. Phys. Chem. A, 102 (1998), p. 10486

[44] M.-M. Rohmer; M. Bénard; J.-M. Poblet Chem. Rev., 100 (2000), p. 495

[45] S.F. Cartier; B.D. May; A.W. Castleman J. Chem. Phys., 100 (1994), p. 5384

[46] S.F. Cartier; B.D. May; A.W. Castleman J. Am. Chem. Soc., 116 (1994), p. 5295

[47] H.T. Deng; B.C. Guo; K.P. Kerns; A.W. Castleman Int. J. Mass Spectrom. Ion Proc., 138 (1994), p. 275

[48] J. Purnell; S. Wei; A.W. Castleman Chem. Phys. Lett., 229 (1994), p. 105

[49] S. Wei; B.C. Guo; J. Purnell; S.A. Buzza; A.W. Castleman Additions and Corrections, J. Phys Chem., 97 (1993), p. 9559

[50] K.P. Kerns; B.C. Guo; H.T. Deng; A.W. Castleman J. Chem. Phys., 101 (1994), p. 8529

[51] J.S. Pilgrim; M.A. Duncan J. Am. Chem. Soc., 115 (1993), p. 4395

[52] S. Wei; B.C. Guo; H.T. Deng; K.P. Kerns; J. Purnell; S.A. Buzza; A.W. Castleman J. Am. Chem. Soc., 116 (1994), p. 4475

[53] J.S. Pilgrim; M.A. Duncan J. Am. Chem. Soc., 115 (1993), p. 6958

[54] J.S. Pilgrim; M.A. Duncan J. Am. Chem. Soc., 115 (1993), p. 9724

[55] J.S. Pilgrim; M.A. Duncan Int. J. Mass Spectrom. Ion Proc., 138 (1994), p. 283

[56] B.D. May; S.E. Kooi; B.J. Toleno; A.W. Castleman J. Chem. Phys., 106 (1997), p. 2231

[57] S. Wei; A.W. Castleman Chem. Phys. Lett., 227 (1994), p. 305

[58] L.-S. Wang; H. Cheng Phys. Rev. Lett., 79 (1997), p. 2983

[59] H.T. Deng; K.P. Kerns; A.W. Castleman J. Am. Chem. Soc., 118 (1996), p. 446

[60] K.P. Kerns; B.C. Guo; H.T. Deng; A.W. Castleman J. Am. Chem. Soc., 117 (1995), p. 4026

[61] H.T. Deng; B.C. Guo; K.P. Kerns; A.W. Castleman J. Phys. Chem., 98 (1994), p. 13373

[62] Y.G. Byun; S.A. Lee; S.Z. Kan; B.S. Freiser J. Phys. Chem., 100 (1996), p. 14281

[63] L.R. Brock; M.A. Duncan J. Phys. Chem., 100 (1996), p. 5654

[64] J. Munoz; C. Pujol; C. Bo; J.M. Poblet; M.-M. Rohmer; M. Bénard J. Phys. Chem. A, 101 (1997), p. 8345

[65] H. Sakurai; A.W. Castleman J. Chem. Phys., 111 (1999), p. 1462

[66] L.-S. Wang; S. Li; H. Wu J. Phys. Chem., 100 (1996), p. 19211

[67] H. Li; H. Wu; L.-S. Wang J. Am. Chem. Soc., 119 (1997), p. 7417

[68] B.D. May; S.F. Cartier; A.W. Castleman Chem. Phys. Lett., 242 (1995), p. 265

[69] S.F. Cartier; B.D. May; A.W. Castleman J. Chem. Phys., 104 (1996), p. 3423

[70] S.E. Kooi; A.W. Castleman J. Chem. Phys., 108 (1998), p. 8864

[71] T. Leisner; K. Athanassenas; O. Echt; D. Kreisle; E. Rechnagel J. Chem. Phys., 99 (1993), p. 9670

[72] T. Leisner; K. Athanassenas; O. Echt; O. Kandler; D. Kreisle; E. Rechnagel Z. Phys. D, 20 (1991), p. 127

[73] B.A. Collings; A.H. Amrein; D.M. Rayner; P.A. Hackett J. Chem. Phys., 99 (1993), p. 4174

[74] B.C. Nieman; E.K. Parks; S.C. Richtsmeier; K. Liu; L.G. Pobo; S.L. Riley High Temp. Sci., 22 (1986), p. 115

[75] K. Athanassenas; T. Leisner; U. Frenzel; D. Kreisle Ber. Bunsenges. Phys. Chem., 96 (1992), p. 1192

[76] A. Amrein; R. Simpson; P. Hackett J. Chem. Phys., 95 (1991), p. 1781

[77] E.E.B. Campbell; G. Ulmer; I.V. Hertel Phys. Rev. Lett., 67 (1991), p. 1986

[78] D. Ding; J. Huang; R.N. Compton; C.E. Klots; R.E. Haufler Phys. Rev. Lett., 73 (1994), p. 1084

[79] H. Lin; K.-L. Han; Y. Bao; E.B. Gallogly; W.M. Jackson J. Phys. Chem., 98 (1994), p. 12495

[80] C.E. Klots Chem. Phys. Lett., 186 (1991), p. 73

[81] H. Sakurai; S.E. Kooi; A.W. Castleman J. Cluster Science, 10 (1999), p. 493

[82] H.T. Deng; K.P. Kerns; A.W. Castleman J. Chem. Phys., 104 (1996), p. 4862

[83] A.H. Zewail J. Phys. Chem., 100 (1996), p. 12701

[84] S. Rutz; S. Greschik; E. Schreiber; L. Wöste Chem. Phys. Lett., 257 (1996), p. 365

[85] A. Assion; T. Baumert; J. Helbing; V. Seyfried; G. Gerber Phys. Rev. A, 55 (1997), p. 1899

[86] S. Vajda; S. Rutz; J. Heufelder; P. Rosendo; H. Ruppe; P. Wetzel; L. Wöste J. Phys. Chem. A, 102 (1998), p. 4066

[87] S.E. Kooi; B.D. Leskiw; A.W. Castleman Nano Lett., 1 (2001), p. 113

[88] B.D. Leskiw, K.L. Knappenberger Jr., A.W. Castleman Jr., Relaxation dynamics of electronically excited vanadium–carbon clusters: excitation of the Met-Car, J. Chem. Phys., submitted

[89] B. Bescós; B. Lang; J. Weiner; V. Weiss; E. Wiedenmann; G. Gerber Eur. Phys. J. D, 9 (1999), p. 399

[90] B. Chen; J.G. Vries De; B.D. Frühberger; C.M. Kim; Z.-M. Liu J. Vac. Sci. Technol. A, 13 (1995), p. 1600

[91] G. Heijnsbergen; D. Helden; M.A. Duncan; A.J.A. Roij; G. Meijer Phys. Rev. Lett., 83 (1999), p. 4983

[92] S.F. Cartier; Z.Y. Chen; G.J. Walder; C.R. Sleppy; A.W. Castleman Science, 260 (1993), p. 195

[93] R. Selvan; T. Pradeep Chem. Phys. Lett., 309 (1999), p. 149

[94] G.S. McCarty; J.C. Love; J.G. Kushmerick; L.F. Charles; C.D. Keating; B.J. Toleno; M.E. Lyn; A.W. Castleman; M.J. Natan; P.S. Weiss J. Nanoparticle Res., 1 (1999), p. 459

  • José A. Rodriguez; Carlos Jimenez-Orozco; Elizabeth Flórez; Francesc Viñes; Francesc Illas C1 Chemistry on Metal Carbide Nanoparticles: Boosting the Conversion of CO2 and CH4, The Journal of Physical Chemistry C, Volume 127 (2023) no. 34, p. 16764 | DOI:10.1021/acs.jpcc.3c04541
  • Zhiling Liu; Qingyang Lin; Ya Li; Jing He; Jingmei Jiao; Lianxia Liu; Yonghong Yan; Hai-Shun Wu; Fuqiang Zhang; Jianfeng Jia; Hua Xie Photoelectron velocity-map imaging spectroscopy of nickel carbide: examination of the low-lying electronic states, New Journal of Chemistry, Volume 46 (2022) no. 22, p. 10887 | DOI:10.1039/d2nj01564a
  • Christopher R. Ashman; Samed Halilov Orientational Effects on the Electronic Structure and Polarization in Sc3N@C80, The Journal of Physical Chemistry A, Volume 126 (2022) no. 10, p. 1605 | DOI:10.1021/acs.jpca.1c10025
  • Jarrett L. Mason; Carley N. Folluo; Caroline Chick Jarrold More than little fragments of matter: Electronic and molecular structures of clusters, The Journal of Chemical Physics, Volume 154 (2021) no. 20 | DOI:10.1063/5.0054222
  • Joaquim Marçalo; John K. Gibson Gas-Phase Ion Chemistry of Rare Earths and Actinides, Including Actinides, Volume 45 (2014), p. 1 | DOI:10.1016/b978-0-444-63256-2.00263-1
  • Roy Buschbeck; Paul J. Low; Heinrich Lang Homoleptic transition metal acetylides, Coordination Chemistry Reviews, Volume 255 (2011) no. 1-2, p. 241 | DOI:10.1016/j.ccr.2010.07.004
  • Matthew A. Addicoat; Mark A. Buntine; Brian Yates; Gregory F. Metha Associative versus dissociative binding of CO to 4d transition metal trimers: A density functional study, Journal of Computational Chemistry, Volume 29 (2008) no. 9, p. 1497 | DOI:10.1002/jcc.20912
  • Sheng-Gui He; Yan Xie; Feng Dong; Scott Heinbuch; Elena Jakubikova; J. J. Rocca; Elliot R. Bernstein Reactions of Sulfur Dioxide with Neutral Vanadium Oxide Clusters in the Gas Phase. II. Experimental Study Employing Single-Photon Ionization, The Journal of Physical Chemistry A, Volume 112 (2008) no. 44, p. 11067 | DOI:10.1021/jp805744g
  • Yun Wang; Jan Szczepanski; Martin Vala Silver−Carbon Cluster AgC3: Structure and Infrared Frequencies, The Journal of Physical Chemistry A, Volume 112 (2008) no. 44, p. 11088 | DOI:10.1021/jp805181m
  • K. M. Davis; S. J. Peppernick; A. W. Castleman Metal-carbon clusters: The origin of the delayed atomic ion, The Journal of Chemical Physics, Volume 124 (2006) no. 16 | DOI:10.1063/1.2171692
  • S.-G. He; Y. Xie; F. Dong; E. R. Bernstein Reaction of niobium and tantalum neutral clusters with low pressure, unsaturated hydrocarbons in a pickup cell: From dehydrogenation to Met-Car formation, The Journal of Chemical Physics, Volume 125 (2006) no. 16 | DOI:10.1063/1.2360278
  • Ping Liu; José A. Rodriguez; James T. Muckerman Sulfur adsorption and sulfidation of transition metal carbides as hydrotreating catalysts, Journal of Molecular Catalysis A: Chemical, Volume 239 (2005) no. 1-2, p. 116 | DOI:10.1016/j.molcata.2005.06.002
  • Ping Liu; José A. Rodriguez Effects of carbon on the stability and chemical performance of transition metal carbides: A density functional study, The Journal of Chemical Physics, Volume 120 (2004) no. 11, p. 5414 | DOI:10.1063/1.1647050
  • Ping Liu; José A. Rodriguez; James T. Muckerman The chemical activity of metal compound nanoparticles: Importance of electronic and steric effects in M8C12 (M=Ti, V, Mo) metcars, The Journal of Chemical Physics, Volume 121 (2004) no. 21, p. 10321 | DOI:10.1063/1.1825374
  • Ping Liu; José A. Rodriguez; James T. Muckerman Desulfurization of SO2and Thiophene on Surfaces and Nanoparticles of Molybdenum Carbide:  Unexpected Ligand and Steric Effects, The Journal of Physical Chemistry B, Volume 108 (2004) no. 40, p. 15662 | DOI:10.1021/jp040267a
  • Ping Liu; José A. Rodriguez; James T. Muckerman The Ti8C12 Metcar:  A New Model Catalyst for Hydrodesulfurization, The Journal of Physical Chemistry B, Volume 108 (2004) no. 49, p. 18796 | DOI:10.1021/jp045460j
  • Ping Liu; José A. Rodriguez; Hua Hou; James T. Muckerman Chemical reactivity of metcar Ti8C12, nanocrystal Ti14C13 and a bulk TiC(001) surface: A density functional study, The Journal of Chemical Physics, Volume 118 (2003) no. 17, p. 7737 | DOI:10.1063/1.1570397
  • James M. Lightstone; Heather A. Mann; Ming Wu; Philip M. Johnson; Michael G. White Gas-Phase Production of Molybdenum Carbide, Nitride, and Sulfide Clusters and Nanocrystallites, The Journal of Physical Chemistry B, Volume 107 (2003) no. 38, p. 10359 | DOI:10.1021/jp027674b

Cité par 18 documents. Sources : Crossref

Commentaires - Politique