[Physique et mathématique des solitons optiques managés en dispersion]
Nous passons en revue les principales propriétés physiques et mathématiques des solitons dits managés par la dispersion (DM). La théorie des solitions DM peut être développée selon deux niveaux de précision : le premier relève de modèles simples, mais toutefois quantitatifs, tels que basés sur des équations différentielles ordinaires gouvernant les deux paramètres solitons que sont la largeur temporelle et la phase (le soit-disant ‘chirp’ ou dérive temporelle de fréquence) ; le deuxième relève d'une théorie poussée de cheminement-moyen, laquelle est en mesure de décrire en détail et la structure fine de l'enveloppe du soliton DM, et son évolution tout au long de la ligne de fibre. Nous présentons également une discussion sur une analogie entre le DM soliton et un modèle d'oscillateur quantique non-linéaire à l'échelle macroscopique.
We review the main physical and mathematical properties of dispersion-managed (DM) optical solitons. Theory of DM solitons can be presented at two levels of accuracy: first, simple, but nevertheless, quantitative models based on ordinary differential equations governing evolution of the soliton width and phase parameter (the so-called chirp); and second, a comprehensive path-average theory that is capable of describing in detail both the fine structure of DM soliton form and its evolution along the fiber line. An analogy between DM soliton and a macroscopic nonlinear quantum oscillator model is also discussed.
Publié le :
Mots-clés : Solitons optiques, Communications à fibres optiques, Management de dispersion
Sergei K. Turitsyn 1 ; Elena G. Shapiro 2 ; Sergei B. Medvedev 3 ; Mikhail P. Fedoruk 3 ; Vladimir K. Mezentsev 1
@article{CRPHYS_2003__4_1_145_0, author = {Sergei K. Turitsyn and Elena G. Shapiro and Sergei B. Medvedev and Mikhail P. Fedoruk and Vladimir K. Mezentsev}, title = {Physics and mathematics of dispersion-managed optical solitons}, journal = {Comptes Rendus. Physique}, pages = {145--161}, publisher = {Elsevier}, volume = {4}, number = {1}, year = {2003}, doi = {10.1016/S1631-0705(03)00008-2}, language = {en}, }
TY - JOUR AU - Sergei K. Turitsyn AU - Elena G. Shapiro AU - Sergei B. Medvedev AU - Mikhail P. Fedoruk AU - Vladimir K. Mezentsev TI - Physics and mathematics of dispersion-managed optical solitons JO - Comptes Rendus. Physique PY - 2003 SP - 145 EP - 161 VL - 4 IS - 1 PB - Elsevier DO - 10.1016/S1631-0705(03)00008-2 LA - en ID - CRPHYS_2003__4_1_145_0 ER -
%0 Journal Article %A Sergei K. Turitsyn %A Elena G. Shapiro %A Sergei B. Medvedev %A Mikhail P. Fedoruk %A Vladimir K. Mezentsev %T Physics and mathematics of dispersion-managed optical solitons %J Comptes Rendus. Physique %D 2003 %P 145-161 %V 4 %N 1 %I Elsevier %R 10.1016/S1631-0705(03)00008-2 %G en %F CRPHYS_2003__4_1_145_0
Sergei K. Turitsyn; Elena G. Shapiro; Sergei B. Medvedev; Mikhail P. Fedoruk; Vladimir K. Mezentsev. Physics and mathematics of dispersion-managed optical solitons. Comptes Rendus. Physique, Volume 4 (2003) no. 1, pp. 145-161. doi : 10.1016/S1631-0705(03)00008-2. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00008-2/
[1] Theory of Solitons. The Inverse Scattering Method, Plenum, New York, 1984
[2] Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981
[3] Spectral Transform and Solitons I, North-Holland, Amsterdam, 1982
[4] Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985
[5] Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge University Press, 1991
[6] Solitons in Action (K. Lonngren; A. Scott, eds.), Academic Press, London, 1978
[7] Solitons and Nonlinear Waves, Academic Press, London, 1982
[8] Solitons (S.E. Trullinger; V.E. Zakharov; V.L. Pokrovsky, eds.), Elsevier, Amstredam, 1986
[9] Solitons in Optical Communications, Claredon Press, Oxford, 1995
[10] Nonlinear Science. Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, 1999
[11] Erbium-Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994
[12] Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3–1.7 μm spectral region, Opt. Lett., Volume 5 (1980), pp. 476-480
[13] Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett., Volume 23 (1991), pp. 142-144
[14] Exact theory of two-dimensional self focusing and one dimensional modulation of waves in nonlinear media, Sov. Phys. JETP, Volume 33 (1971), pp. 77-83
[15] Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., Volume 45 (1980), pp. 1095-1097
[16] Long-distance soliton propagation using lumped amplifiers and dispersion-shifted fiber, IEEE J. Lightwave Technol., Volume 9 (1991), pp. 194-197
[17] Guiding-center soliton in optical fibers, Opt. Lett., Volume 15 (1991), pp. 1443-1444
[18] Average soliton dynamics and the operation of soliton systems with lumped amplifiers, IEEE Photon. Technol. Lett., Volume 3 (1991), pp. 369-379
[19] Optical Fiber Telecommunications, Vol. IIIA (I.P. Kaminow; T.L. Koch, eds.), Academic Press, 1997, p. 373 (Chapter 12)
[20] Soliton transmission control, Opt. Lett., Volume 16 (1991), pp. 1841-1843
[21] Modulation and filtering control of soliton transmission, J. Opt. Soc. Am. B, Volume 9 (1992), pp. 1350-1364
[22] Random walk of coherently amplified solitons in optical fiber transmission, Opt. Lett., Volume 11 (1986), pp. 665-666
[23] 10 Gbit/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation, IEEE J. Lightwave Technol., Volume 13 (1995), pp. 1960-1995
[24] Reduction of Gordon–Haus timing jitter bz periodic dispersion compensation in soliton transmission, Electron. Lett., Volume 31 (1995), pp. 2027-2035
[25] 320 Gbit/s soliton WDM transmission over 1100 km with 100 km dispersion-compensated spans of standard fiber, ECOC '97, Edinburgh, 1997, pp. 25-30 (post deadline paper V.5)
[26] et al. 320 Gb/s WDM transmission (64×5 Gb/s) over 7200 km using large mode fiber spans and chirped return-to-zero signals, OFC '98, San Jose, USA, 1998 (post deadline presentation, PD12-1)
[27] et al. 4×SONET OC-192 field installed dispersion managed soliton system over 450 km of standard fiber in the 1550 nm erbium band, OFC '98, San Jose, USA, 1998 (post deadline presentation, PD19-1)
[28] Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and Experiment, IEEE J. Quantum Electron., Volume 31 (1995), pp. 591-595
[29] Enhanced power solitons in optical fiber transmission line, Electron. Lett., Volume 32 (1996), pp. 54-60
[30] Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation, Opt. Lett., Volume 21 (1996), pp. 327-328
[31] Breathing solitons in optical fiber links, JETP Lett., Volume 63 (1996), pp. 861-864
[32] Energy scaling characteristics of solitons in strongly dispersion-managed fibers, Opt. Lett., Volume 21 (1997), pp. 1981-1983
[33] Optical pulse dynamics in fiber links with dispersion compensation, Opt. Commun., Volume 134 (1997), pp. 317-335
[34] Asymptotic breathing pulse in optical transmission systems with dispersion compensation, Phys. Rev. E, Volume 55 (1997), pp. 3624-3630
[35] Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett., Volume 23 (1998), pp. 384-386
[36] On the theory of chirped optical soliton in fiber lines with varying dispersion, JETP Lett., Volume 68 (1998) no. 11, pp. 830-836
[37] Hamiltonian averaging and integrability in nonlinear systems with periodically varying dispersion, JETP Lett., Volume 69 (1999) no. 7, pp. 499-506
[38] Novel fibers for soliton communications, Optical Fiber Communication Conference, Vol. 2, OSA, Washington, DC, 1998, OSA Technical Digest Series, 1998, p. 22
[39] Opt. Lett., 24 (1999), p. 869
[40] Lie-transform averaging in nonlinear optical transmission systems with strong and rapid periodic variations, Phys. Lett. A, Volume 265 (2000), pp. 274-281
[41] On propagation of short pulses in strong dispersion managed optical lines, JETP Lett., Volume 70 (1999) no. 9, pp. 573-578
[42] Propagation of optical pulses in nonlinear systems with varying dispersion (V.E. Zakharov; S. Wabnitz, eds.), Optical Solitons. Theoretical Challenges and Industrial Perspectives, EDP Sciences, Springer, 1999
[43] Reduction of the dispersive wave in periodically amplified links with initially chirped solitons, IEEE Photon. Technol. Lett., Volume 9 (1997), pp. 127-133
[44] Stretched-pulse optical fiber communications, IEEE Photon. Technol. Lett., Volume 9 (1997), pp. 785-790
[45] Analysis of enhanced-power solitons in dispersion-managed optical fibers, Opt. Lett., Volume 22 (1997), pp. 985-987
[46] Hamiltonian dynamics of dispersion managed breathers, JOSA B, Volume 15 (1998), pp. 87-90
[47] Optimization of periodically dispersion compensated breathing soliton transmissions, Photon. Technol. Lett., Volume 9 (1997), pp. 1670-1673
[48] Enhanced power breathing soliton in communication systems with dispersion management, Phys. Rev. E, Volume 22 (1997), pp. 1544-1546
[49] Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion, Electron. Lett., Volume 33 (1997), pp. 1726-1727
[50] Recent progress in dispersion-managed soliton transmission technologies, Opt. Fiber Technol., Volume 3 (1997), pp. 197-200
[51] Transmission systems based on dispersion-managed solitons: Theory and experiment, Proc. of II International Symposium on Physics and Applications of Optical Solitons in Fibers, Kyoto, 1997 (paper 2-A-2)
[52] Dynamics of self-similar dispersion-managed soliton presented in the basis of chirped Gauss–Hermite functions, JETP Lett., Volume 67 (1998), pp. 640-643
[53] Hermite–Gaussian expansion for pulse propagation in strongly dispersion managed fibers, Phys. Rev. E, Volume 34 (1998), pp. 1124-1125
[54] Self-similar core and oscillatory tails of a path-averaged chirped dispersion-managed optical pulse, Opt. Lett., Volume 23 (1998), pp. 1351-1353
[55] Hamiltonian averaging in soliton-bearing systems with periodically varying dispersion, Phys. Rev. E, Volume 59 (1999), p. R3843-R3846
[56] Self-similar dynamics and oscillatory tails of a breathing soliton in systems with varying dispersion, Phys. Rev. E, Volume 58 (1998)
[57] Rms characteristics of pulses in nonlinear dispersive lossy fibers, Opt. Commun., Volume 117 (1995), pp. 56-60
[58] Dispersion management in optical fiber links: self-consistent solution for the RMS pulse parameters, IEEE J. Lightwave Technol., Volume 17 (1999), pp. 445-458
[59] Optimal dispersion maps for wavelength-division-multiplexed soliton transmission, Opt. Lett., Volume 23 (1998), pp. 597-599
[60] Path-average theory of chirped dispersion-managed soliton, Opt. Commun., Volume 163 (1999), pp. 122-158
[61] Dispersion-managed soliton in a strong dispersion map limit, Opt. Lett., Volume 26 (2001), pp. 1535-1537
[62] Dispersion-managed soliton in optical fibers with zero average dispersion, Opt. Lett., Volume 25 (2000), pp. 1144-1146
[63] Nonlinearity management in dispersion managed system, Opt. Lett., Volume 27 (2002), pp. 113-115
[64] Instabilities of dispersion-managed solitons in the normal dispersion regime, Phys. Rev. E, Volume 62 (1998), pp. 4283-4293
[65] Averaged model and integrable limits in nonlinear double-periodic Hamiltonian systems, Phys. Rev. E, Volume 61 (2000), pp. 3127-3132
[66] Averaged model and integrable limits in nonlinear double-periodic Hamiltonian systems, Massive WDM and TDM Solution Transmission Systems, Kluwer Academic, 2000
[67] Dispersion-managed solitons and optimization of the dispersion management, Opt. Fiber Technol., Volume 4 (1998), pp. 384-402
Cité par Sources :
Commentaires - Politique