[Physique et mathématique des solitons optiques managés en dispersion]
We review the main physical and mathematical properties of dispersion-managed (DM) optical solitons. Theory of DM solitons can be presented at two levels of accuracy: first, simple, but nevertheless, quantitative models based on ordinary differential equations governing evolution of the soliton width and phase parameter (the so-called chirp); and second, a comprehensive path-average theory that is capable of describing in detail both the fine structure of DM soliton form and its evolution along the fiber line. An analogy between DM soliton and a macroscopic nonlinear quantum oscillator model is also discussed.
Nous passons en revue les principales propriétés physiques et mathématiques des solitons dits managés par la dispersion (DM). La théorie des solitions DM peut être développée selon deux niveaux de précision : le premier relève de modèles simples, mais toutefois quantitatifs, tels que basés sur des équations différentielles ordinaires gouvernant les deux paramètres solitons que sont la largeur temporelle et la phase (le soit-disant ‘chirp’ ou dérive temporelle de fréquence) ; le deuxième relève d'une théorie poussée de cheminement-moyen, laquelle est en mesure de décrire en détail et la structure fine de l'enveloppe du soliton DM, et son évolution tout au long de la ligne de fibre. Nous présentons également une discussion sur une analogie entre le DM soliton et un modèle d'oscillateur quantique non-linéaire à l'échelle macroscopique.
Publié le :
Mots-clés : Solitons optiques, Communications à fibres optiques, Management de dispersion
Sergei K. Turitsyn 1 ; Elena G. Shapiro 2 ; Sergei B. Medvedev 3 ; Mikhail P. Fedoruk 3 ; Vladimir K. Mezentsev 1
@article{CRPHYS_2003__4_1_145_0, author = {Sergei K. Turitsyn and Elena G. Shapiro and Sergei B. Medvedev and Mikhail P. Fedoruk and Vladimir K. Mezentsev}, title = {Physics and mathematics of dispersion-managed optical solitons}, journal = {Comptes Rendus. Physique}, pages = {145--161}, publisher = {Elsevier}, volume = {4}, number = {1}, year = {2003}, doi = {10.1016/S1631-0705(03)00008-2}, language = {en}, }
TY - JOUR AU - Sergei K. Turitsyn AU - Elena G. Shapiro AU - Sergei B. Medvedev AU - Mikhail P. Fedoruk AU - Vladimir K. Mezentsev TI - Physics and mathematics of dispersion-managed optical solitons JO - Comptes Rendus. Physique PY - 2003 SP - 145 EP - 161 VL - 4 IS - 1 PB - Elsevier DO - 10.1016/S1631-0705(03)00008-2 LA - en ID - CRPHYS_2003__4_1_145_0 ER -
%0 Journal Article %A Sergei K. Turitsyn %A Elena G. Shapiro %A Sergei B. Medvedev %A Mikhail P. Fedoruk %A Vladimir K. Mezentsev %T Physics and mathematics of dispersion-managed optical solitons %J Comptes Rendus. Physique %D 2003 %P 145-161 %V 4 %N 1 %I Elsevier %R 10.1016/S1631-0705(03)00008-2 %G en %F CRPHYS_2003__4_1_145_0
Sergei K. Turitsyn; Elena G. Shapiro; Sergei B. Medvedev; Mikhail P. Fedoruk; Vladimir K. Mezentsev. Physics and mathematics of dispersion-managed optical solitons. Comptes Rendus. Physique, Volume 4 (2003) no. 1, pp. 145-161. doi : 10.1016/S1631-0705(03)00008-2. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00008-2/
[1] Theory of Solitons. The Inverse Scattering Method, Plenum, New York, 1984
[2] Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981
[3] Spectral Transform and Solitons I, North-Holland, Amsterdam, 1982
[4] Solitons in Mathematics and Physics, SIAM, Philadelphia, 1985
[5] Solitons, Nonlinear Evolution Equations and Inverse Scattering, London Math. Soc. Lecture Note Ser., 149, Cambridge University Press, 1991
[6] Solitons in Action (K. Lonngren; A. Scott, eds.), Academic Press, London, 1978
[7] Solitons and Nonlinear Waves, Academic Press, London, 1982
[8] Solitons (S.E. Trullinger; V.E. Zakharov; V.L. Pokrovsky, eds.), Elsevier, Amstredam, 1986
[9] Solitons in Optical Communications, Claredon Press, Oxford, 1995
[10] Nonlinear Science. Emergence and Dynamics of Coherent Structures, Oxford University Press, Oxford, 1999
[11] Erbium-Doped Fiber Amplifiers: Principles and Applications, Wiley, New York, 1994
[12] Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3–1.7 μm spectral region, Opt. Lett., Volume 5 (1980), pp. 476-480
[13] Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion, Appl. Phys. Lett., Volume 23 (1991), pp. 142-144
[14] Exact theory of two-dimensional self focusing and one dimensional modulation of waves in nonlinear media, Sov. Phys. JETP, Volume 33 (1971), pp. 77-83
[15] Experimental observation of picosecond pulse narrowing and solitons in optical fibers, Phys. Rev. Lett., Volume 45 (1980), pp. 1095-1097
[16] Long-distance soliton propagation using lumped amplifiers and dispersion-shifted fiber, IEEE J. Lightwave Technol., Volume 9 (1991), pp. 194-197
[17] Guiding-center soliton in optical fibers, Opt. Lett., Volume 15 (1991), pp. 1443-1444
[18] Average soliton dynamics and the operation of soliton systems with lumped amplifiers, IEEE Photon. Technol. Lett., Volume 3 (1991), pp. 369-379
[19] Optical Fiber Telecommunications, Vol. IIIA (I.P. Kaminow; T.L. Koch, eds.), Academic Press, 1997, p. 373 (Chapter 12)
[20] Soliton transmission control, Opt. Lett., Volume 16 (1991), pp. 1841-1843
[21] Modulation and filtering control of soliton transmission, J. Opt. Soc. Am. B, Volume 9 (1992), pp. 1350-1364
[22] Random walk of coherently amplified solitons in optical fiber transmission, Opt. Lett., Volume 11 (1986), pp. 665-666
[23] 10 Gbit/s soliton communication systems over standard fiber at 1.55 μm and the use of dispersion compensation, IEEE J. Lightwave Technol., Volume 13 (1995), pp. 1960-1995
[24] Reduction of Gordon–Haus timing jitter bz periodic dispersion compensation in soliton transmission, Electron. Lett., Volume 31 (1995), pp. 2027-2035
[25] 320 Gbit/s soliton WDM transmission over 1100 km with 100 km dispersion-compensated spans of standard fiber, ECOC '97, Edinburgh, 1997, pp. 25-30 (post deadline paper V.5)
[26] et al. 320 Gb/s WDM transmission (64×5 Gb/s) over 7200 km using large mode fiber spans and chirped return-to-zero signals, OFC '98, San Jose, USA, 1998 (post deadline presentation, PD12-1)
[27] et al. 4×SONET OC-192 field installed dispersion managed soliton system over 450 km of standard fiber in the 1550 nm erbium band, OFC '98, San Jose, USA, 1998 (post deadline presentation, PD19-1)
[28] Stretched-pulse additive pulse mode-locking in fiber ring lasers: Theory and Experiment, IEEE J. Quantum Electron., Volume 31 (1995), pp. 591-595
[29] Enhanced power solitons in optical fiber transmission line, Electron. Lett., Volume 32 (1996), pp. 54-60
[30] Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation, Opt. Lett., Volume 21 (1996), pp. 327-328
[31] Breathing solitons in optical fiber links, JETP Lett., Volume 63 (1996), pp. 861-864
[32] Energy scaling characteristics of solitons in strongly dispersion-managed fibers, Opt. Lett., Volume 21 (1997), pp. 1981-1983
[33] Optical pulse dynamics in fiber links with dispersion compensation, Opt. Commun., Volume 134 (1997), pp. 317-335
[34] Asymptotic breathing pulse in optical transmission systems with dispersion compensation, Phys. Rev. E, Volume 55 (1997), pp. 3624-3630
[35] Multiscale pulse dynamics in communication systems with strong dispersion management, Opt. Lett., Volume 23 (1998), pp. 384-386
[36] On the theory of chirped optical soliton in fiber lines with varying dispersion, JETP Lett., Volume 68 (1998) no. 11, pp. 830-836
[37] Hamiltonian averaging and integrability in nonlinear systems with periodically varying dispersion, JETP Lett., Volume 69 (1999) no. 7, pp. 499-506
[38] Novel fibers for soliton communications, Optical Fiber Communication Conference, Vol. 2, OSA, Washington, DC, 1998, OSA Technical Digest Series, 1998, p. 22
[39] Opt. Lett., 24 (1999), p. 869
[40] Lie-transform averaging in nonlinear optical transmission systems with strong and rapid periodic variations, Phys. Lett. A, Volume 265 (2000), pp. 274-281
[41] On propagation of short pulses in strong dispersion managed optical lines, JETP Lett., Volume 70 (1999) no. 9, pp. 573-578
[42] Propagation of optical pulses in nonlinear systems with varying dispersion (V.E. Zakharov; S. Wabnitz, eds.), Optical Solitons. Theoretical Challenges and Industrial Perspectives, EDP Sciences, Springer, 1999
[43] Reduction of the dispersive wave in periodically amplified links with initially chirped solitons, IEEE Photon. Technol. Lett., Volume 9 (1997), pp. 127-133
[44] Stretched-pulse optical fiber communications, IEEE Photon. Technol. Lett., Volume 9 (1997), pp. 785-790
[45] Analysis of enhanced-power solitons in dispersion-managed optical fibers, Opt. Lett., Volume 22 (1997), pp. 985-987
[46] Hamiltonian dynamics of dispersion managed breathers, JOSA B, Volume 15 (1998), pp. 87-90
[47] Optimization of periodically dispersion compensated breathing soliton transmissions, Photon. Technol. Lett., Volume 9 (1997), pp. 1670-1673
[48] Enhanced power breathing soliton in communication systems with dispersion management, Phys. Rev. E, Volume 22 (1997), pp. 1544-1546
[49] Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion, Electron. Lett., Volume 33 (1997), pp. 1726-1727
[50] Recent progress in dispersion-managed soliton transmission technologies, Opt. Fiber Technol., Volume 3 (1997), pp. 197-200
[51] Transmission systems based on dispersion-managed solitons: Theory and experiment, Proc. of II International Symposium on Physics and Applications of Optical Solitons in Fibers, Kyoto, 1997 (paper 2-A-2)
[52] Dynamics of self-similar dispersion-managed soliton presented in the basis of chirped Gauss–Hermite functions, JETP Lett., Volume 67 (1998), pp. 640-643
[53] Hermite–Gaussian expansion for pulse propagation in strongly dispersion managed fibers, Phys. Rev. E, Volume 34 (1998), pp. 1124-1125
[54] Self-similar core and oscillatory tails of a path-averaged chirped dispersion-managed optical pulse, Opt. Lett., Volume 23 (1998), pp. 1351-1353
[55] Hamiltonian averaging in soliton-bearing systems with periodically varying dispersion, Phys. Rev. E, Volume 59 (1999), p. R3843-R3846
[56] Self-similar dynamics and oscillatory tails of a breathing soliton in systems with varying dispersion, Phys. Rev. E, Volume 58 (1998)
[57] Rms characteristics of pulses in nonlinear dispersive lossy fibers, Opt. Commun., Volume 117 (1995), pp. 56-60
[58] Dispersion management in optical fiber links: self-consistent solution for the RMS pulse parameters, IEEE J. Lightwave Technol., Volume 17 (1999), pp. 445-458
[59] Optimal dispersion maps for wavelength-division-multiplexed soliton transmission, Opt. Lett., Volume 23 (1998), pp. 597-599
[60] Path-average theory of chirped dispersion-managed soliton, Opt. Commun., Volume 163 (1999), pp. 122-158
[61] Dispersion-managed soliton in a strong dispersion map limit, Opt. Lett., Volume 26 (2001), pp. 1535-1537
[62] Dispersion-managed soliton in optical fibers with zero average dispersion, Opt. Lett., Volume 25 (2000), pp. 1144-1146
[63] Nonlinearity management in dispersion managed system, Opt. Lett., Volume 27 (2002), pp. 113-115
[64] Instabilities of dispersion-managed solitons in the normal dispersion regime, Phys. Rev. E, Volume 62 (1998), pp. 4283-4293
[65] Averaged model and integrable limits in nonlinear double-periodic Hamiltonian systems, Phys. Rev. E, Volume 61 (2000), pp. 3127-3132
[66] Averaged model and integrable limits in nonlinear double-periodic Hamiltonian systems, Massive WDM and TDM Solution Transmission Systems, Kluwer Academic, 2000
[67] Dispersion-managed solitons and optimization of the dispersion management, Opt. Fiber Technol., Volume 4 (1998), pp. 384-402
- Optical soliton solutions of the third-order nonlinear Schrödinger equation in the absence of chromatic dispersion, Modern Physics Letters B, Volume 39 (2025) no. 11 | DOI:10.1142/s0217984924504724
- Generation of a 33.9 nJ, 91 fs pulse at 920 nm from an Nd-doped fiber laser, Optics Express, Volume 33 (2025) no. 5, p. 10121 | DOI:10.1364/oe.554744
- Higher order dispersion-managed solitons for the capacity enhancement of fiber optic communication systems, Optics Express, Volume 33 (2025) no. 7, p. 16014 | DOI:10.1364/oe.550327
- High-Order Block Toeplitz Inner-Bordering method for solving the Gelfand–Levitan–Marchenko equation, Communications in Nonlinear Science and Numerical Simulation, Volume 138 (2024), p. 108255 | DOI:10.1016/j.cnsns.2024.108255
- On the Change in the Duration of a Narrow-Band Signal in a Dispersive Medium with Increasing Path Length (Within the Framework of the Method of Moments), Radiophysics and Quantum Electronics, Volume 67 (2024) no. 2, p. 166 | DOI:10.1007/s11141-025-10363-w
- Optical solitons of a cubic-quartic nonlinear Schrödinger equation with parabolic law nonlinearity in optical metamaterials, International Journal of Geometric Methods in Modern Physics, Volume 20 (2023) no. 13 | DOI:10.1142/s0219887823502353
- Dispersion Managed Mode-Locking in All-Fiber Polarization-Maintaining Nd-Doped Laser at 920 nm, Journal of Lightwave Technology, Volume 41 (2023) no. 8, p. 2494 | DOI:10.1109/jlt.2022.3229826
- Numerical Methods for Some Nonlinear Schrödinger Equations in Soliton Management, Journal of Scientific Computing, Volume 95 (2023) no. 2 | DOI:10.1007/s10915-023-02181-x
- Optical solitons of the (2+1)-dimensional nonlinear Schrödinger equation with spatio-temporal dispersion in quadratic-cubic media, Physica Scripta, Volume 98 (2023) no. 11, p. 115231 | DOI:10.1088/1402-4896/ad0002
- Fast sixth-order algorithm based on the generalized Cayley transform for the Zakharov-Shabat system associated with nonlinear Schrodinger equation, Journal of Computational Physics, Volume 448 (2022), p. 110764 | DOI:10.1016/j.jcp.2021.110764
- Interchanging Space and Time in Nonlinear Optics Modeling and Dispersion Management Models, Journal of Nonlinear Science, Volume 32 (2022) no. 3 | DOI:10.1007/s00332-022-09788-8
- Averaging of dispersion managed nonlinear Schrödinger equations, Nonlinearity, Volume 35 (2022) no. 4, p. 2121 | DOI:10.1088/1361-6544/ac5464
- , Optical Fiber Communication Conference (OFC) 2022 (2022), p. W2A.38 | DOI:10.1364/ofc.2022.w2a.38
- On dispersion managed nonlinear Schrödinger equations with lumped amplification, Journal of Mathematical Physics, Volume 62 (2021) no. 7 | DOI:10.1063/5.0053132
- Non-autonomous Ginzburg-Landau solitons using the He-Li mapping method, CIENCIA ergo sum, Volume 27 (2020) no. 4, p. e104 | DOI:10.30878/ces.v27n4a3
- A Brief History of Fiber-Optic Soliton Transmission, Handbook of Optical Fibers (2019), p. 221 | DOI:10.1007/978-981-10-7087-7_71
- A Brief History of Fiber-Optic Soliton Transmission, Handbook of Optical Fibers (2018), p. 1 | DOI:10.1007/978-981-10-1477-2_71-1
- Adiabatic midpoint rule for the dispersion-managed nonlinear Schrödinger equation, Numerische Mathematik, Volume 138 (2018) no. 4, p. 975 | DOI:10.1007/s00211-017-0926-2
- Soliton Content of Fiber-Optic Light Pulses, Applied Sciences, Volume 7 (2017) no. 6, p. 635 | DOI:10.3390/app7060635
- Discrete diffraction managed solitons: Threshold phenomena and rapid decay for general nonlinearities, Journal of Mathematical Physics, Volume 58 (2017) no. 10, p. 101513 | DOI:10.1063/1.5004253
- Exponential Decay of Dispersion-Managed Solitons for General Dispersion Profiles, Letters in Mathematical Physics, Volume 106 (2016) no. 2, p. 221 | DOI:10.1007/s11005-015-0811-9
- Soliton molecules for advanced optical telecommunications, The European Physical Journal Special Topics, Volume 225 (2016) no. 13-14, p. 2453 | DOI:10.1140/epjst/e2016-60023-1
- Dissipative solitons in fiber lasers, Uspekhi Fizicheskih Nauk, Volume 186 (2016) no. 7, p. 713 | DOI:10.3367/ufnr.2015.12.037674
- Stability of dispersion managed solitons for vanishing average dispersion, Archiv der Mathematik, Volume 104 (2015) no. 3, p. 283 | DOI:10.1007/s00013-015-0731-z
- Bose-Einstein Condensates and Signal Transmission in Optical Fibers, Mathematical Models with Singularities, Volume 1 (2015), p. 43 | DOI:10.2991/978-94-6239-106-2_5
- Nonlinear pulse shaping and polarization dynamics in mode-locked fiber lasers, International Journal of Modern Physics B, Volume 28 (2014) no. 12, p. 1442011 | DOI:10.1142/s0217979214420119
- Coherent soliton communication lines, Journal of Experimental and Theoretical Physics, Volume 119 (2014) no. 5, p. 787 | DOI:10.1134/s1063776114100124
- Soliton communication lines based on spectrally efficient modulation formats, Quantum Electronics, Volume 44 (2014) no. 6, p. 606 | DOI:10.1070/qe2014v044n06abeh015382
- Dynamics of Parametric Excitation, Encyclopedia of Complexity and Systems Science (2013), p. 1 | DOI:10.1007/978-3-642-27737-5_144-3
- A high power MOPA-laser based on a mode-locked thulium-doped fiber oscillator with intracavity dispersion management, Laser Physics, Volume 23 (2013) no. 4, p. 045108 | DOI:10.1088/1054-660x/23/4/045108
- Two-soliton and three-soliton molecules in optical fibers, Physical Review A, Volume 87 (2013) no. 4 | DOI:10.1103/physreva.87.043834
- Higher-order equilibria of temporal soliton molecules in dispersion-managed fibers, Physical Review A, Volume 88 (2013) no. 6 | DOI:10.1103/physreva.88.063843
- Mathematical modelling of dispersion-managed thulium/holmium fibre lasers, Quantum Electronics, Volume 43 (2013) no. 11, p. 1019 | DOI:10.1070/qe2013v043n11abeh015204
- Dynamics of Parametric Excitation, Mathematics of Complexity and Dynamical Systems (2012), p. 183 | DOI:10.1007/978-1-4614-1806-1_13
- Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics, Optics Express, Volume 19 (2011) no. 9, p. 8394 | DOI:10.1364/oe.19.008394
- A combined variational-topological approach for dispersion-managed solitons in optical fibers, Zeitschrift für angewandte Mathematik und Physik, Volume 62 (2011) no. 2, p. 245 | DOI:10.1007/s00033-010-0084-1
- Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers, Journal of Modern Optics, Volume 57 (2010) no. 16, p. 1498 | DOI:10.1080/09500340.2010.504889
- Interactions between dispersion-managed solitons with unequal powers, Journal of the Optical Society of America B, Volume 27 (2010) no. 4, p. 844 | DOI:10.1364/josab.27.000844
- , CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference (2009), p. 1 | DOI:10.1109/cleoe-eqec.2009.5192842
- Decay Estimates and Smoothness for Solutions of the Dispersion Managed Non-linear Schrödinger Equation, Communications in Mathematical Physics, Volume 286 (2009) no. 3, p. 851 | DOI:10.1007/s00220-008-0612-4
- Dynamics of Parametric Excitation, Encyclopedia of Complexity and Systems Science (2009), p. 2323 | DOI:10.1007/978-0-387-30440-3_144
- Localized Waves in Optical Systems with Periodic Dispersion and Nonlinearity Management, International Journal of Optics, Volume 2009 (2009) no. 1 | DOI:10.1155/2009/181467
- Perturbation of super-Gaussian optical solitons in dispersion-managed fibers, Mathematical and Computer Modelling, Volume 49 (2009) no. 7-8, p. 1700 | DOI:10.1016/j.mcm.2008.08.020
- On the calculation of the timing shifts in the variable-coefficient Korteweg-de Vries equation, Mathematics and Computers in Simulation, Volume 80 (2009) no. 1, p. 212 | DOI:10.1016/j.matcom.2009.06.003
- Calculation of timing and amplitude jitter in a dispersion-managed Korteweg–de Vries system, Mathematics and Computers in Simulation, Volume 80 (2009) no. 4, p. 660 | DOI:10.1016/j.matcom.2009.08.021
- Exact analytic solitary wave solutions for the RKL model, Mathematics and Computers in Simulation, Volume 80 (2009) no. 4, p. 849 | DOI:10.1016/j.matcom.2009.08.031
- Dissipative dispersion-managed solitons in mode-locked lasers, Optics Letters, Volume 34 (2009) no. 21, p. 3286 | DOI:10.1364/ol.34.003286
- Engineering integrable nonautonomous nonlinear Schrödinger equations, Physical Review E, Volume 79 (2009) no. 5 | DOI:10.1103/physreve.79.056610
- Perturbation of Gaussian optical solitons in dispersion-managed fibers, Applied Mathematics and Computation, Volume 199 (2008) no. 1, p. 250 | DOI:10.1016/j.amc.2007.09.059
- Complexity and stability of soliton management in periodically modulated and random systems, Complexity, Volume 13 (2008) no. 4, p. 38 | DOI:10.1002/cplx.20207
- Perturbation of Super-Sech Solitons in Dispersion-Managed Optical Fibers, International Journal of Theoretical Physics, Volume 47 (2008) no. 7, p. 2038 | DOI:10.1007/s10773-007-9648-z
- Binding mechanism of temporal soliton molecules, Physical Review A, Volume 78 (2008) no. 6 | DOI:10.1103/physreva.78.063817
- ADIABATIC DYNAMICS OF GAUSSIAN AND SUPER-GAUSSIAN SOLITONS IN DISPERSION-MANAGED OPTICAL FIBERS, Progress In Electromagnetics Research, Volume 84 (2008), p. 27 | DOI:10.2528/pier08052703
- TIMING SHIFT OF OPTICAL PULSES DUE TO INTER-CHANNEL CROSS-TALK, Progress In Electromagnetics Research M, Volume 1 (2008), p. 21 | DOI:10.2528/pierm08012705
- Energy transfer in a dispersion-managed Korteweg-de Vries system, Mathematics and Computers in Simulation, Volume 76 (2007) no. 4, p. 283 | DOI:10.1016/j.matcom.2006.11.005
- A scheme for pre-shaping of dispersion-managed solitons, Optics Communications, Volume 270 (2007) no. 2, p. 151 | DOI:10.1016/j.optcom.2006.09.025
- Modulational instability in nonlinearity-managed optical media, Physical Review A, Volume 75 (2007) no. 6 | DOI:10.1103/physreva.75.063804
- Multiple-period dispersion-managed solitons, Physical Review A, Volume 76 (2007) no. 4 | DOI:10.1103/physreva.76.043819
- Controlling pulse propagation in optical fibers through nonlinearity and dispersion management, Physical Review A, Volume 76 (2007) no. 4 | DOI:10.1103/physreva.76.043838
- Mismatch management for optical and matter-wave quadratic solitons, Physical Review E, Volume 75 (2007) no. 2 | DOI:10.1103/physreve.75.026612
- , 2006 International Conference on Transparent Optical Networks, Volume 1 (2006), p. 259 | DOI:10.1109/icton.2006.248231
- Numerical simulation and optimization of fiber optical lines with dispersion management, Computational Science and High Performance Computing II, Volume 91 (2006), p. 145 | DOI:10.1007/3-540-31768-6_12
- Optimal preprocessing of pulses for dispersion management, Journal of the Optical Society of America B, Volume 23 (2006) no. 7, p. 1257 | DOI:10.1364/josab.23.001257
- Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients, Physica D: Nonlinear Phenomena, Volume 221 (2006) no. 1, p. 31 | DOI:10.1016/j.physd.2006.07.002
- Modulational Instability in a Layered Kerr Medium: Theory and Experiment, Physical Review Letters, Volume 97 (2006) no. 23 | DOI:10.1103/physrevlett.97.234101
- Soliton propagation in a dispersion map with deviation from periodicity, Applied Physics B, Volume 81 (2005) no. 7, p. 983 | DOI:10.1007/s00340-005-2018-8
- Mathematical modeling of optical communication lines with dispersion management, Computational Science and High Performance Computing, Volume 88 (2005), p. 173 | DOI:10.1007/3-540-32376-7_10
- Transmission of pulses in a dispersion-managed fiber link with extra nonlinear segments, Optics Communications, Volume 245 (2005) no. 1-6, p. 227 | DOI:10.1016/j.optcom.2004.10.052
- An iterative numerical method for dispersion-managed solitons, Optics Communications, Volume 245 (2005) no. 1-6, p. 425 | DOI:10.1016/j.optcom.2004.10.034
- PATTERN FORMING DYNAMICAL INSTABILITIES OF BOSE–EINSTEIN CONDENSATES, Modern Physics Letters B, Volume 18 (2004) no. 05n06, p. 173 | DOI:10.1142/s0217984904006809
- Resonant nonlinearity management for nonlinear Schrödinger solitons, Physical Review E, Volume 70 (2004) no. 6 | DOI:10.1103/physreve.70.066613
- Averaging for Solitons with Nonlinearity Management, Physical Review Letters, Volume 91 (2003) no. 24 | DOI:10.1103/physrevlett.91.240201
Cité par 72 documents. Sources : Crossref
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier