[Mise au point de fluides intelligents pour le contrôle de l'application de solutions vaporisées]
Les récents progrès concernant la compréhension des « fluides complexes » ont permis le développement de nouveaux additifs chimiques utilisés dans l'industrie phyto-sanitaire qui ont abouti à des produits plus efficaces et à un haut niveau de protection environnementale et publique. Nous présentons ici un exemple concernant l'amélioration de l'application des herbicides et des pesticides durant leur vaporisation sur des plantes. En choisissant judicieusement des solutions diluées de polymères, il est possible d'améliorer simultanément les caractéristiques du jet, la déposition des gouttes, et la rétention du produit sur la surface de la plante cible. L'optimisation de ces paramètres demande de trouver un équilibre entre l'hydrodynamique et les interactions moléculaires qui contrôlent le comportement des solutions vaporisées.
Recent advances in our understanding of ‘complex fluids’ have lead to the development of new chemical additives in the agricultural industry, which provide more efficient products and a higher level of public and environmental protection. Here we present one example that deals with the improved application of herbicides and pesticides during the spray treatment of plants. Using judiciously chosen dilute polymer solutions, one can simultaneously improve the spray characteristics, droplet deposition, and product retention onto the targeted plant surface. Achieving these combined benefits, requires a delicate balance between fluid hydrodynamics and the molecular interactions that control the phase behaviour of the sprayed solutions.
Mots-clés : Viscosité élongationelle, Rebond de gouttes, Herbicides, Pesticides
Vance Bergeron 1
@article{CRPHYS_2003__4_2_211_0, author = {Vance Bergeron}, title = {Designing intelligent fluids for controlling spray applications}, journal = {Comptes Rendus. Physique}, pages = {211--219}, publisher = {Elsevier}, volume = {4}, number = {2}, year = {2003}, doi = {10.1016/S1631-0705(03)00043-4}, language = {en}, }
Vance Bergeron. Designing intelligent fluids for controlling spray applications. Comptes Rendus. Physique, Volume 4 (2003) no. 2, pp. 211-219. doi : 10.1016/S1631-0705(03)00043-4. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/S1631-0705(03)00043-4/
[1] Memoire sur la constiturion des vienes liquids lancees par des orifices circulaires en mince paroi, Ann. De Chim., Volume 53 (1883), pp. 337-387
[2] Rayleigh Lord (J.W. Strutt), Scientific Papers, Vol. 1, Cambridge University Press, London, 1899
[3] Nonlinear dynamics and breakup of free-surface flows, Rev. Modern Phys., Volume 69 (1997), pp. 865-929
[4] Breakup of a laminar capillary jet of viscoelastic fluid, J. Fluid Mech., Volume 38 (1969), pp. 689-711
[5] Stability of a viscoelastic jet, Chem. Eng. Sci., Volume 20 (1965), pp. 1037-1040
[6] Atomisation of dilute polymer solutions in agricultural spray nozzles, J. Non-Newtonian Fluid Mech., Volume 83 (1999), pp. 163-178
[7] A highly elastic constant-viscosity fluid, J. Non-Newtonian Fluid Mech., Volume 3 (1997), pp. 87-91
[8] Characterization and distribution of water-repellent self-cleaning plant surfaces, Ann. Botany, Volume 79 (1997), p. 667
[9] Phenomena of liquid drop impact on solid and liquid surface, Fluid Dyn. Res., Volume 12 (1993), pp. 61-93
[10] Dynamic surface tension effects in impact of a drop with a solid surface, J. Colloid Interface Sci., Volume 187 (1997), p. 166
[11] et al. Influence of dynamic surface tension on the spreading of surfactant solution droplets impacting onto a low-surface-energy solid substrate, J. Colloid Interface Sci., Volume 192 (1997), p. 129
[12] Controlling droplet deposition with polymer additives, Nature, Volume 405 (2000), p. 772
[13] Influence of fluid elasticity on drops impacting on dry surfaces, J. Rheol., Volume 44 (2000), pp. 973-996
- Enhancing spray retention using cloaked droplets to reduce pesticide pollution, Soft Matter (2025) | DOI:10.1039/d4sm01496k
- , 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT) (2024), p. 1 | DOI:10.1109/icccnt61001.2024.10726150
- Design of a Contact-Type Electrostatic Spray Boom System Based on Rod-Plate Electrode Structure and Field Experiments on Droplet Deposition Distribution, Agronomy, Volume 14 (2024) no. 11, p. 2715 | DOI:10.3390/agronomy14112715
- Jetting-based bioprinting: process, dispense physics, and applications, Bio-Design and Manufacturing, Volume 7 (2024) no. 5, p. 771 | DOI:10.1007/s42242-024-00285-3
- Microfibrillated cellulose (MFC) barrier coating for extending banana shelf life, Food Hydrocolloids, Volume 150 (2024), p. 109671 | DOI:10.1016/j.foodhyd.2023.109671
- Suspension Concentrate crop protection formulation design and performance for low spray volume and UAS spray application, Pest Management Science, Volume 80 (2024) no. 2, p. 220 | DOI:10.1002/ps.7707
- Dynamic Spreading of Insecticidal Pesticide Droplets on Superhydrophobic Plant Leaves through Host–Guest Chemistry, ACS Agricultural Science Technology, Volume 3 (2023) no. 2, p. 158 | DOI:10.1021/acsagscitech.2c00211
- Evaluation of Liquid Atomization and Spray Drift Reduction of Hydraulic Nozzles with Four Spray Adjuvant Solutions, Agriculture, Volume 13 (2023) no. 2, p. 236 | DOI:10.3390/agriculture13020236
- Triggering of electro-elastic anti-superhydrophobicity during non-Newtonian droplet collision, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 479 (2023) no. 2275 | DOI:10.1098/rspa.2022.0612
- Study on Spray Deposition and Drift Characteristics of UAV Agricultural Sprayer for Application of Insecticide in Redgram Crop (Cajanus cajan L. Millsp.), Agronomy, Volume 12 (2022) no. 12, p. 3196 | DOI:10.3390/agronomy12123196
- Eco-friendly and multifunctional lignocellulosic nanofibre additives for enhancing pesticide deposition and retention, Chemical Engineering Journal, Volume 430 (2022), p. 133011 | DOI:10.1016/j.cej.2021.133011
- Dynamic behaviors of impinging viscoelastic droplets on superhydrophobic surfaces heated above the boiling temperature, International Journal of Heat and Mass Transfer, Volume 183 (2022), p. 122080 | DOI:10.1016/j.ijheatmasstransfer.2021.122080
- Oblique drop impact: can one infer the angle of impact?, Journal of Fluid Mechanics, Volume 948 (2022) | DOI:10.1017/jfm.2022.736
- Influence of pH, salt ions, and binary mixtures of different molecular weights on the extensional rheology of polyethylene oxide, Journal of Rheology, Volume 66 (2022) no. 5, p. 881 | DOI:10.1122/8.0000467
- On the effect of concentration and wettability on polymer drops impact, dynamics and energy dissipation, The European Physical Journal Applied Physics, Volume 97 (2022), p. 66 | DOI:10.1051/epjap/2022220127
- Drift Evaluation of a Quadrotor Unmanned Aerial Vehicle (UAV) Sprayer: Effect of Liquid Pressure and Wind Speed on Drift Potential Based on Wind Tunnel Test, Applied Sciences, Volume 11 (2021) no. 16, p. 7258 | DOI:10.3390/app11167258
- Impact dynamics of Newtonian and viscoelastic droplets on heated surfaces at low Weber number, Case Studies in Thermal Engineering, Volume 26 (2021), p. 101109 | DOI:10.1016/j.csite.2021.101109
- Functional fluorination agents for opposite extreme wettability coatings with robustness, water splash inhibition, and controllable oil transport, Chemical Engineering Journal, Volume 415 (2021), p. 128895 | DOI:10.1016/j.cej.2021.128895
- The Use of Nanocellulose in Edible Coatings for the Preservation of Perishable Fruits and Vegetables, Coatings, Volume 11 (2021) no. 8, p. 990 | DOI:10.3390/coatings11080990
- Quantifying the effect of extensional rheology on the retention of agricultural sprays, Physics of Fluids, Volume 33 (2021) no. 3 | DOI:10.1063/5.0038391
- Nanoscopic interactions of colloidal particles can suppress millimetre drop splashing, Soft Matter, Volume 17 (2021) no. 20, p. 5116 | DOI:10.1039/d0sm01367f
- Orchard Spray Study: A Prediction Model of Droplet Deposition States on Leaf Surfaces, Agronomy, Volume 10 (2020) no. 5, p. 747 | DOI:10.3390/agronomy10050747
- Radiative MHD Sutterby Nanofluid Flow Past a Moving Sheet: Scaling Group Analysis, Mathematics, Volume 8 (2020) no. 9, p. 1430 | DOI:10.3390/math8091430
- Bounce Behavior and Regulation of Pesticide Solution Droplets on Rice Leaf Surfaces, Journal of Agricultural and Food Chemistry, Volume 66 (2018) no. 44, p. 11560 | DOI:10.1021/acs.jafc.8b02619
- Viscous effects on the interaction of granular particles with floating oils in water, Science of The Total Environment, Volume 628-629 (2018), p. 835 | DOI:10.1016/j.scitotenv.2018.02.124
- Influence of the surface limiting elasticity modulus on the impact behavior of droplets of difenoconazole-loaded mesoporous silica nanoparticles with associated SDS, Soft Matter, Volume 14 (2018) no. 29, p. 6070 | DOI:10.1039/c8sm01196f
- Suppressing prompt splash with polymer additives, Experiments in Fluids, Volume 58 (2017) no. 5 | DOI:10.1007/s00348-017-2341-y
- Polymeric Drift Control Adjuvants for Agricultural Spraying, Macromolecular Chemistry and Physics, Volume 217 (2016) no. 20, p. 2223 | DOI:10.1002/macp.201600139
- Enhancing droplet deposition through in-situ precipitation, Nature Communications, Volume 7 (2016) no. 1 | DOI:10.1038/ncomms12560
- Free radially expanding liquid sheet in air: time- and space-resolved measurement of the thickness field, Journal of Fluid Mechanics, Volume 764 (2015), p. 428 | DOI:10.1017/jfm.2014.714
- Dynamic wetting of viscoelastic droplets, Physical Review E, Volume 92 (2015) no. 4 | DOI:10.1103/physreve.92.043002
- Bursting of Dilute Emulsion-Based Liquid Sheets Driven by a Marangoni Effect, Physical Review Letters, Volume 115 (2015) no. 19 | DOI:10.1103/physrevlett.115.198302
- The impact and retention of spray droplets on a horizontal hydrophobic surface, Biosystems Engineering, Volume 126 (2014), p. 82 | DOI:10.1016/j.biosystemseng.2014.07.013
- Effect of polymer concentration on the dynamics of dilute polymer solution drops impacting on heated surfaces in the Leidenfrost regime, Experimental Thermal and Fluid Science, Volume 52 (2014), p. 259 | DOI:10.1016/j.expthermflusci.2013.09.019
- Stability of W/O Emulsions Encapsulating Polysaccharides, Journal of Dispersion Science and Technology, Volume 35 (2014) no. 1, p. 38 | DOI:10.1080/01932691.2013.773444
- Drift Control Adjuvant Benchmarking in Agricultural Spray Applications, Pesticide Formulation and Delivery Systems: 33rd Volume, “Sustainability: Contributions from Formulation Technology” (2014), p. 1 | DOI:10.1520/stp156920120142
- Dynamic wetting of dilute polymer solutions: The case of impacting droplets, Advances in Colloid and Interface Science, Volume 193-194 (2013), p. 1 | DOI:10.1016/j.cis.2013.03.001
- Drop impact behavior on food using spray coating: Fundamentals and applications, Food Research International, Volume 54 (2013) no. 1, p. 397 | DOI:10.1016/j.foodres.2013.07.042
- Experimental method for the assessment of agricultural spray retention based on high-speed imaging of drop impact on a synthetic superhydrophobic surface, Biosystems Engineering, Volume 112 (2012) no. 1, p. 56 | DOI:10.1016/j.biosystemseng.2012.02.005
- Experimental reaction-driven liquid film fingering instability, Chemical Physics Letters, Volume 534 (2012), p. 13 | DOI:10.1016/j.cplett.2012.03.024
- Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces, Experimental Thermal and Fluid Science, Volume 38 (2012), p. 140 | DOI:10.1016/j.expthermflusci.2011.12.003
- Experimental study of the dynamics of magneto-rheological fluid droplet impact, Experiments in Fluids, Volume 53 (2012) no. 5, p. 1577 | DOI:10.1007/s00348-012-1376-3
- The impact of liquid drops on purple cabbage leaves (Brassica oleracea l. Var. Capitata), Ingeniería e Investigación, Volume 32 (2012) no. 2, p. 79 | DOI:10.15446/ing.investig.v32n2.31946
- Experimental study of drop impacts and spreading on epicarps: Effect of fluid properties, Journal of Food Engineering, Volume 109 (2012) no. 3, p. 430 | DOI:10.1016/j.jfoodeng.2011.10.038
- Guar and Guar Derivatives, Polymer Science: A Comprehensive Reference (2012), p. 195 | DOI:10.1016/b978-0-444-53349-4.00256-9
- Modeling the Spray Atomization of Emulsion Embedded Agricultural Solutions, Pesticide Formulations and Delivery Systems, 30th Volume: Regulations and Innovation (2011), p. 189 | DOI:10.1520/stp152720120013
- Gelled Fuel Simulant Droplet Impact onto a Solid Surface, Propellants, Explosives, Pyrotechnics, Volume 36 (2011) no. 3, p. 273 | DOI:10.1002/prep.201000023
- The spreading behaviour of capillary driven yield-stress drops, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Volume 366 (2010) no. 1-3, p. 18 | DOI:10.1016/j.colsurfa.2010.05.019
- Delivery Optimization for Pesticides, Precision Crop Protection - the Challenge and Use of Heterogeneity (2010), p. 311 | DOI:10.1007/978-90-481-9277-9_19
- An experimental study of bouncing Leidenfrost drops: Comparison between Newtonian and viscoelastic liquids, International Journal of Heat and Mass Transfer, Volume 52 (2009) no. 7-8, p. 1786 | DOI:10.1016/j.ijheatmasstransfer.2008.09.028
- Impact of shear-thinning and yield-stress drops on solid substrates, Journal of Physics: Condensed Matter, Volume 21 (2009) no. 37, p. 375111 | DOI:10.1088/0953-8984/21/37/375111
- Breakup of shear-thinning liquid jets with surfactants, Chemical Engineering Science, Volume 63 (2008) no. 7, p. 1842 | DOI:10.1016/j.ces.2007.12.011
- Influence of agricultural adjuvants on droplet spectra, Pest Management Science, Volume 63 (2007) no. 1, p. 4 | DOI:10.1002/ps.1321
- Effect of polymer–surfactant interactions on elongational viscosity and atomization of peo solutions, Journal of Non-Newtonian Fluid Mechanics, Volume 138 (2006) no. 1, p. 1 | DOI:10.1016/j.jnnfm.2006.03.014
- The hydrodynamics of drop impact onto chemically structured surfaces, Journal of Physics: Condensed Matter, Volume 17 (2005) no. 9, p. S607 | DOI:10.1088/0953-8984/17/9/019
- Controlling secondary atomization during drop impact on hot surfaces by polymer additives, Physics of Fluids, Volume 17 (2005) no. 10 | DOI:10.1063/1.2112667
- Drop impact on a hot surface: effect of a polymer additive, Experiments in Fluids, Volume 37 (2004) no. 5, p. 653 | DOI:10.1007/s00348-004-0852-9
Cité par 57 documents. Sources : Crossref
Commentaires - Politique