[Dynamiques Chaotiques Appliquées à la cryptographie pour les télécommunications optiques]
La cryptographie par chaos est apparue récemment au début des années 90, comme une application originale des dynamiques non linéaires en régime chaotique. Alors que les premières réalisations ont été mises en œuvre à partir de circuits électroniques, l'optique s'est rapidement intéressée au sujet. Grâce à des propriétés physiques particulières et familières dans le domaine de l'Optique, de nombreux démonstrateurs originaux et variés ont été développés, fonctionnant avec des dynamiques chaotiques aux propriétés attractives, tant en terme de complexité des régimes chaotiques, qu'en terme de bande passante, et donc de vitesse de codage. Ce numéro spécial passe en revue la plupart des travaux actuels sur les systèmes cryptographiques par chaos en optique.
Chaos-based encryption appeared recently in the early 1990s as an original application of nonlinear dynamics in the chaotic regime. While the first experimental realizations were made in Electronics, the Optics community rapidly showed a strong interest in this new scientific application due to the well-known feature of Optics in the area of nonlinear phenomena. Numerous optical demonstrations have been performed, involving chaotic dynamics with particularly interesting properties in terms of chaos complexity, and also in terms of bandwidth i.e., encryption speed. This special issue gives a review of most of the current works on optical chaos dedicated to encryption.
Mots-clés : Télécommunications optiques, Chaos, Cryptographie
Laurent Larger 1, 2 ; Jean-Pierre Goedgebuer 1, 2
@article{CRPHYS_2004__5_6_609_0, author = {Laurent Larger and Jean-Pierre Goedgebuer}, title = {Encryption using chaotic dynamics for optical telecommunications}, journal = {Comptes Rendus. Physique}, pages = {609--611}, publisher = {Elsevier}, volume = {5}, number = {6}, year = {2004}, doi = {10.1016/j.crhy.2004.05.004}, language = {en}, }
Laurent Larger; Jean-Pierre Goedgebuer. Encryption using chaotic dynamics for optical telecommunications. Comptes Rendus. Physique, Cryptography using optical chaos, Volume 5 (2004) no. 6, pp. 609-611. doi : 10.1016/j.crhy.2004.05.004. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2004.05.004/
[1] Phys. Rev. Lett., 64 (1990), p. 821
[2] Phys. Rev. Lett., 71 (1993), p. 65
[3] Lect. Notes in Comput. Sci., 839 (1993), p. 318
[4] IEEE Phot. Techn. Lett., 8 (1996), p. 299
[5] IEEE J. Quantum Electron., 33 (1997), p. 1449
[6] Science, 279 (1998), p. 1198
[7] Phys. Rev. Lett., 80 (1998), p. 2249
[8] Opt. Lett., 24 (1999), pp. 890-892
[9] Phys. Rev. A, 62 (2000), p. 011801(R)
[10] Phys. Rev. Lett., 83 (1999), p. 5389
- Photonic analog signal processing and neuromorphic computing [Invited], Chinese Optics Letters, Volume 22 (2024) no. 3, p. 032501 | DOI:10.3788/col202422.032501
- , 2023 Second International Conference on Advanced Computer Applications (ACA) (2023), p. 1 | DOI:10.1109/aca57612.2023.10346881
- Network authentication by close-loop synchronized chaotic lasers, Optical and Quantum Electronics, Volume 55 (2023) no. 4 | DOI:10.1007/s11082-023-04640-z
- Images cipher based on convolution with chaotic maps and retrieving using the alternating direction method of multipliers, Optics Laser Technology, Volume 167 (2023), p. 109680 | DOI:10.1016/j.optlastec.2023.109680
- Ghost Polarization Communication, Physical Review Applied, Volume 13 (2020) no. 3 | DOI:10.1103/physrevapplied.13.034062
- Assessing Security of Chaos Communications Against Eavesdropping by Pump Detection, IEEE Journal of Quantum Electronics, Volume 55 (2019) no. 2, p. 1 | DOI:10.1109/jqe.2019.2897117
- Simultaneous trilateral communication based on three mutually coupled chaotic semiconductor lasers with optical feedback, Applied Optics, Volume 57 (2018) no. 2, p. 251 | DOI:10.1364/ao.57.000251
- Private Communications Using Optical Chaos, Chaos Theory (2018) | DOI:10.5772/intechopen.70896
- Wavelength division multiplexing secure communication scheme based on an optically coupled phase chaos system and PM-to-IM conversion mechanism, Nonlinear Dynamics, Volume 94 (2018) no. 3, p. 1949 | DOI:10.1007/s11071-018-4467-8
- Analysis of phase synchronization of chaotic oscillations in terms of symbolic CTQ-analysis, Technical Physics, Volume 61 (2016) no. 2, p. 265 | DOI:10.1134/s106378421602016x
- A Secure Communication Design Based on the Chaotic Logistic Map: An Experimental Realization Using Arduino Microcontrollers, Computation, Cryptography, and Network Security (2015), p. 737 | DOI:10.1007/978-3-319-18275-9_28
- Privacy in Two-Laser and Three-Laser Chaos Communications, IEEE Journal of Quantum Electronics, Volume 51 (2015) no. 7, p. 1 | DOI:10.1109/jqe.2015.2434274
- Optical Signal Processing and Stealth Transmission for Privacy, IEEE Journal of Selected Topics in Signal Processing, Volume 9 (2015) no. 7, p. 1185 | DOI:10.1109/jstsp.2015.2424690
- Analysis of the time structure of synchronization in multidimensional chaotic systems, Journal of Experimental and Theoretical Physics, Volume 120 (2015) no. 5, p. 912 | DOI:10.1134/s106377611504010x
- Discrete Maps and the Problem of Round Trip Time Scale Nonlinear Dynamics in Solid-State Lasers, Nonlinear Maps and their Applications, Volume 112 (2015), p. 159 | DOI:10.1007/978-3-319-12328-8_8
- An Experimental Realization of a Chaos‐Based Secure Communication Using Arduino Microcontrollers, The Scientific World Journal, Volume 2015 (2015) no. 1 | DOI:10.1155/2015/123080
- , 2014 Complexity in Engineering (COMPENG) (2014), p. 1 | DOI:10.1109/compeng.2014.6994679
- , Free-Space Laser Communication and Atmospheric Propagation XXVI, Volume 8971 (2014), p. 897102 | DOI:10.1117/12.2033442
- Round-Trip-Time Nonlinear Dynamics of Electro-Optically-Controlled Solid State Lasers, Journal of Russian Laser Research, Volume 35 (2014) no. 5, p. 492 | DOI:10.1007/s10946-014-9452-1
- , NAECON 2014 - IEEE National Aerospace and Electronics Conference (2014), p. 290 | DOI:10.1109/naecon.2014.7045819
- Relation between delayed feedback and delay-coupled systems and its application to chaotic lasers, Chaos: An Interdisciplinary Journal of Nonlinear Science, Volume 23 (2013) no. 4 | DOI:10.1063/1.4844335
- Enhancing Privacy of Chaotic Communications by Double Masking, IEEE Journal of Quantum Electronics, Volume 49 (2013) no. 11, p. 955 | DOI:10.1109/jqe.2013.2283584
- Implementation of a Chaotic Oscillator into a Simple Microcontroller, IERI Procedia, Volume 4 (2013), p. 247 | DOI:10.1016/j.ieri.2013.11.035
- Slow–fast dynamics of a time-delayed electro-optic oscillator, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 371 (2013) no. 1999, p. 20120459 | DOI:10.1098/rsta.2012.0459
- Multi-User Private Transmission With Chaotic Lasers, IEEE Journal of Quantum Electronics, Volume 48 (2012) no. 8, p. 1095 | DOI:10.1109/jqe.2012.2202373
- Error Analysis of a Digital Message Impaired by Optical Chaos, IEEE Photonics Technology Letters, Volume 24 (2012) no. 11, p. 903 | DOI:10.1109/lpt.2012.2190395
- References, Optical Communication with Chaotic Lasers (2012), p. 557 | DOI:10.1002/9783527640331.refs
- Crenelated fast oscillatory outputs of a two-delay electro-optic oscillator, Physical Review E, Volume 85 (2012) no. 2 | DOI:10.1103/physreve.85.026206
- Strongly asymmetric square waves in a time-delayed system, Physical Review E, Volume 86 (2012) no. 5 | DOI:10.1103/physreve.86.055201
- Slave–master dynamics of semiconductor laser with short external cavity, Optics Communications, Volume 284 (2011) no. 12, p. 3018 | DOI:10.1016/j.optcom.2011.02.016
- A method of implementation of frequency encoded all optical encryption decryption using four wave mixing, Optik, Volume 122 (2011) no. 16, p. 1407 | DOI:10.1016/j.ijleo.2010.09.017
- Chaos Generation and Synchronization Using an Integrated Source With an Air Gap, IEEE Journal of Quantum Electronics, Volume 46 (2010) no. 12, p. 1840 | DOI:10.1109/jqe.2010.2049642
- Close-loop three-laser scheme for chaos-encrypted message transmission, Optical and Quantum Electronics, Volume 42 (2010) no. 3, p. 143 | DOI:10.1007/s11082-010-9435-6
- Chaos based multiple image encryption using multiple canonical transforms, Optics Laser Technology, Volume 42 (2010) no. 5, p. 724 | DOI:10.1016/j.optlastec.2009.11.016
- Chaos-on-a-chip secures data transmission in optical fiber links, Optics Express, Volume 18 (2010) no. 5, p. 5188 | DOI:10.1364/oe.18.005188
- Chaos-based secure communication system using logistic map, Optics and Lasers in Engineering, Volume 48 (2010) no. 3, p. 398 | DOI:10.1016/j.optlaseng.2009.10.001
- Optical image encryption using improper Hartley transforms and chaos, Optik, Volume 121 (2010) no. 10, p. 918 | DOI:10.1016/j.ijleo.2008.09.049
- Digital image watermarking using gyrator transform and chaotic maps, Optik, Volume 121 (2010) no. 15, p. 1427 | DOI:10.1016/j.ijleo.2009.02.020
- Multi-user bidirectional communication using isochronal synchronisation of array of chaotic directly modulated semiconductor lasers, Physics Letters A, Volume 374 (2010) no. 17-18, p. 1835 | DOI:10.1016/j.physleta.2010.02.038
- Bidirectional communication using delay coupled chaotic directly modulated semiconductor lasers, Pramana, Volume 74 (2010) no. 2, p. 177 | DOI:10.1007/s12043-010-0019-6
- Period doubling cascade and deterministic chaos in a laser self-mode-locked by the combination of inertial negative and positive feedbacks, Bulletin of the Lebedev Physics Institute, Volume 36 (2009) no. 5, p. 150 | DOI:10.3103/s1068335609050054
- Information Encoding and Decoding Using Unidirectionally Coupled Chaotic Semiconductor Lasers Subject to Filtered Optical Feedback, IEEE Journal of Quantum Electronics, Volume 45 (2009) no. 8, p. 972 | DOI:10.1109/jqe.2009.2016982
- Performance of encryption schemes in chaotic optical communication: A multifractal approach, Optics Communications, Volume 282 (2009) no. 23, p. 4587 | DOI:10.1016/j.optcom.2009.08.047
- Optical image encryption using Hartley transform and logistic map, Optics Communications, Volume 282 (2009) no. 6, p. 1104 | DOI:10.1016/j.optcom.2008.12.001
- Gyrator transform-based optical image encryption, using chaos, Optics and Lasers in Engineering, Volume 47 (2009) no. 5, p. 539 | DOI:10.1016/j.optlaseng.2008.10.013
- Optical image encryption using fractional Fourier transform and chaos, Optics and Lasers in Engineering, Volume 46 (2008) no. 2, p. 117 | DOI:10.1016/j.optlaseng.2007.09.001
- Synchronization properties of coupled semiconductor lasers subject to filtered optical feedback, Physical Review E, Volume 78 (2008) no. 4 | DOI:10.1103/physreve.78.046218
- Controlling Optical Chaos, Spatio-Temporal Dynamics, and Patterns, Volume 54 (2007), p. 615 | DOI:10.1016/s1049-250x(06)54010-8
- Simultaneous bidirectional message transmission in a chaos-based communication scheme, Optics Letters, Volume 32 (2007) no. 4, p. 403 | DOI:10.1364/ol.32.000403
- Synchronization properties of bidirectionally coupled semiconductor lasers under asymmetric operating conditions, Physical Review E, Volume 75 (2007) no. 6 | DOI:10.1103/physreve.75.066202
- EXPANDED LORENZ SYSTEMS AND CHAOTIC SECURE COMMUNICATION SYSTEMS DESIGN, Journal of Circuits, Systems and Computers, Volume 15 (2006) no. 04, p. 607 | DOI:10.1142/s0218126606003234
- Synchronization properties of two self-oscillating semiconductor lasers subject to delayed optoelectronic mutual coupling, Physical Review E, Volume 73 (2006) no. 4 | DOI:10.1103/physreve.73.047201
- Stable isochronal synchronization of mutually coupled chaotic lasers, Physical Review E, Volume 73 (2006) no. 6 | DOI:10.1103/physreve.73.066214
- Synchronization and communication with chaotic laser systems, Volume 48 (2005), p. 203 | DOI:10.1016/s0079-6638(05)48005-1
- Chaos-based communications at high bit rates using commercial fibre-optic links, Nature, Volume 438 (2005) no. 7066, p. 343 | DOI:10.1038/nature04275
Cité par 55 documents. Sources : Crossref
Commentaires - Politique