[Fibres pour lasers à fibre et amplificateurs de forte puissance]
Cet article présente une revue sur les développements récents des fibres pour les lasers pompés par la gaine de forte puissance. Les structures nécessaires pour une absorption efficace de la lumière de pompe sont décrites, ainsi que les raisons du choix de la silice comme matériau hôte. Les avantages et les contraintes liées aux nouvelles structures, tel que les fibres à large surface de mode ou les fibres microstructurées, sont abordés. Les performances obtenues avec un laser de puissance supérieure à 1 kW soulignent l'importance des structures optimisées et des faibles pertes dans le cœur de la fibre.
A review is given on the recent developments of fibers for high-power cladding-pumped fiber lasers. The structures necessary for an efficient pump light absorption are described and the reasons for the use of silica as the main host material are explained. The advantages and problems of the new structures for high power stability like large-mode-area or microstructured fibers are discussed. The results from a successful kW-fiber-laser experiment are used to underline the importance of optimized structures and low background losses in the fiber core.
Mots-clés : Laser, Fibre, Ytterbium, Forte puissance, Fibre à double gaine
Hans-Rainer Müller 1 ; Johannes Kirchhof 1 ; Volker Reichel 1 ; Sonja Unger 1
@article{CRPHYS_2006__7_2_154_0, author = {Hans-Rainer M\"uller and Johannes Kirchhof and Volker Reichel and Sonja Unger}, title = {Fibers for high-power lasers and amplifiers}, journal = {Comptes Rendus. Physique}, pages = {154--162}, publisher = {Elsevier}, volume = {7}, number = {2}, year = {2006}, doi = {10.1016/j.crhy.2006.01.013}, language = {en}, }
TY - JOUR AU - Hans-Rainer Müller AU - Johannes Kirchhof AU - Volker Reichel AU - Sonja Unger TI - Fibers for high-power lasers and amplifiers JO - Comptes Rendus. Physique PY - 2006 SP - 154 EP - 162 VL - 7 IS - 2 PB - Elsevier DO - 10.1016/j.crhy.2006.01.013 LA - en ID - CRPHYS_2006__7_2_154_0 ER -
Hans-Rainer Müller; Johannes Kirchhof; Volker Reichel; Sonja Unger. Fibers for high-power lasers and amplifiers. Comptes Rendus. Physique, High power fiber lasers and amplifiers, Volume 7 (2006) no. 2, pp. 154-162. doi : 10.1016/j.crhy.2006.01.013. https://comptes-rendus.academie-sciences.fr/physique/articles/10.1016/j.crhy.2006.01.013/
[1] Scalable concept for diode-pumped high-power solid-state lasers, Appl. Phys. B, Volume 58 (1994), p. 365
[2] Solid State Lasers for Materials Processing, Springer-Verlag, Berlin–Heidelberg–New York, 2001
[3] Future of high power lasers, Laser Phys., Volume 8 (1998), p. 774
[4] E. Snitzer, H. Po, R.P. Tuminelli, F. Hakimi, US-Patent US 4,815,079 (1989)
[5] H. Zellmer, Leistungsskalierung von Faserlasern, Thesis, Universität Hannover, Germany (1996)
[6] Optimized absorption in a chaotic double-clad fiber amplifier, Opt. Lett., Volume 26 (2001), p. 872
[7] J. Kirchhof, H.-R. Müller, V. Reichel, A. Tünnermann, S. Unger, H. Zellmer, German Patent DE 196 20 159 C2 (2002)
[8] Efficient and scalable, side pumping scheme for short high-power fiber lasers and amplifiers, IEEE Phot. Technol. Lett., Volume 16 (2004), p. 2024
[9] K. Mörl, S. Unger, V. Reichel, J. Kirchhof, H. Bartelt, H.-R. Müller, Fibers for Kilowatt-Output Fiber Lasers, EPS-QEOD Europhoton Conference on Solid-State and Fiber Coherent Light Sources, Lausanne/Switzerland, August 29–September 3, 2004, paper TuB4
- Material Response With High Power Laser in Surface Treatment of Ferrous Alloys, Encyclopedia of Smart Materials (2022), p. 462 | DOI:10.1016/b978-0-12-815732-9.00080-2
- Fiber laser welding of Ti-6Al-4V alloy, Advanced Welding and Deforming (2021), p. 23 | DOI:10.1016/b978-0-12-822049-8.00002-5
- Fabrication of Yb-doped silica micro-structured optical fibers from UV-curable nano-composites and their application in temperature sensing, Journal of Non-Crystalline Solids, Volume 573 (2021), p. 121129 | DOI:10.1016/j.jnoncrysol.2021.121129
- Numerical study on an optimum Q-switching profile for complete multipeak suppression in an actively Q-switched Ytterbium fibre laser, Laser Physics Letters, Volume 18 (2021) no. 8, p. 085101 | DOI:10.1088/1612-202x/ac0916
- Temperature Effect on Yb-Doped Silica Fiber Laser Performance, IEEE Journal of Quantum Electronics, Volume 56 (2020) no. 5, p. 1 | DOI:10.1109/jqe.2020.3008946
- Active Optical Fibers and Components for Fiber Lasers Emitting in the 2-μm Spectral Range, Materials, Volume 13 (2020) no. 22, p. 5177 | DOI:10.3390/ma13225177
- Rare Earth Elements—A Treasure Locked in AMD?, Recovery of Byproducts from Acid Mine Drainage Treatment (2020), p. 263 | DOI:10.1002/9781119620204.ch10
- Status of laser transformation hardening of steel and its alloys: a review, Emerging Materials Research, Volume 8 (2019) no. 2, p. 188 | DOI:10.1680/jemmr.16.00145
- , Optical Fibers and Their Applications 2017, Volume 10325 (2017), p. 1032503 | DOI:10.1117/12.2268359
- Material Response With High Power Laser in Surface Treatment of Ferrous Alloys, Reference Module in Materials Science and Materials Engineering (2017) | DOI:10.1016/b978-0-12-803581-8.04173-4
- Fabrication, measurement, and application of 20/400 Yb-doped fiber, Applied Optics, Volume 54 (2015) no. 21, p. 6516 | DOI:10.1364/ao.54.006516
- A kW Continuous-Wave Ytterbium-Doped All-Fiber Laser Oscillator with Domestic Fiber Components and Gain Fiber, Chinese Physics Letters, Volume 32 (2015) no. 6, p. 064201 | DOI:10.1088/0256-307x/32/6/064201
- Evolution of fluorine doping following the REPUSIL process for the adjustment of optical properties of silica materials, Optical Materials Express, Volume 5 (2015) no. 4, p. 887 | DOI:10.1364/ome.5.000887
- A highly efficient Yb-doped silica laser fiber prepared by gas phase doping technology, Laser Physics, Volume 24 (2014) no. 3, p. 035103 | DOI:10.1088/1054-660x/24/3/035103
- , 2013 8th International Conference on Electrical and Electronics Engineering (ELECO) (2013), p. 609 | DOI:10.1109/eleco.2013.6713918
- Multiple visible emissions by means of up-conversion process in a microstructured tellurite glass optical fiber, Optics Express, Volume 20 (2012) no. 5, p. 5409 | DOI:10.1364/oe.20.005409
- Fabrication of air-clad fibers for near-IR laser application, Applied Optics, Volume 50 (2011) no. 25, p. E1 | DOI:10.1364/ao.50.0000e1
- Towards a monolithic fiber laser with deep UV femtosecond-induced fiber Bragg gratings, Optics Communications, Volume 284 (2011) no. 24, p. 5770 | DOI:10.1016/j.optcom.2011.08.042
- Fiber-MOPA sources of coherent radiation, Bulletin of the Polish Academy of Sciences: Technical Sciences, Volume 58 (2010) no. 4 | DOI:10.2478/v10175-010-0047-x
- Near-IR-to-visible emission in ytterbium-doped silica fiber at in-core 488-nm pumping, Laser Physics Letters, Volume 5 (2008) no. 12, p. 898 | DOI:10.1002/lapl.200810071
- Specialty fibers for optical communication systems, Optical Fiber Telecommunications V A (2008), p. 523 | DOI:10.1016/b978-0-12-374171-4.00015-0
- Kinetic study of ytterbium(III) extraction from sulfate medium with Cyanex 923, Journal of Chemical Technology Biotechnology, Volume 82 (2007) no. 8, p. 705 | DOI:10.1002/jctb.1712
- Air-clad fibers: pump absorption assisted by chaotic wave dynamics?, Optics Express, Volume 15 (2007) no. 14, p. 8988 | DOI:10.1364/oe.15.008988
- Laser source requirements for coherent lidars based on fiber technology, Comptes Rendus. Physique, Volume 7 (2006) no. 2, p. 213 | DOI:10.1016/j.crhy.2006.03.012
Cité par 24 documents. Sources : Crossref
Commentaires - Politique